Math, asked by rlohith02, 3 days ago

ch 12 exponents and power
answer the 8th question only
correct answer will be marked as brainlist immediately ​

Attachments:

Answers

Answered by mathdude500
16

\large\underline{\sf{Given \:Question - 8(a)}}

Simplify :-

\rm \: \dfrac{ {10}^{ - 5}  \times 125 \times  {3}^{ - 5} }{ {6}^{ - 5}  \times  {5}^{7} }  \\

\large\underline{\sf{Solution-}}

Given expression is

\rm \: \dfrac{ {10}^{ - 5}  \times 125 \times  {3}^{ - 5} }{ {6}^{ - 5}  \times  {5}^{7} }  \\

can be rewritten as

\rm \:  =  \: \dfrac{ {(2 \times 5)}^{ - 5}  \times (5 \times 5 \times 5) \times  {3}^{ - 5} }{ {(3 \times 2)}^{ - 5}  \times  {5}^{7} }  \\

We know,

\boxed{\sf{  \: {(xy)}^{n}  =  {x}^{n}  \times  {y}^{n}  \: }} \\

So, using this identity, we get

\rm \:  =  \: \dfrac{ \cancel{ {2}^{ - 5}} \times \cancel{ {3}^{ - 5}} \times  {5}^{3}  \times  {5}^{ - 5} }{ \cancel{{3}^{ - 5}} \times \cancel{ {2}^{ - 5}}  \times  {5}^{7} }  \\

\rm \:  =  \: \dfrac{ {5}^{3}  \times  {5}^{ - 5} }{{5}^{7} }  \\

We know,

\boxed{\sf{  \: {x}^{m}  \div  {x}^{n}  \:  =  \:  {x}^{m - n}  \: }} \\

So, using this identity, we get

\rm \: =  \:  {5}^{3 - 7}  \times  {5}^{ - 5}  \\

\rm \: =  \:  {5}^{- 4}  \times  {5}^{ - 5}  \\

\rm \: =  \: \dfrac{1}{ {5}^{4} \times  {5}^{5} }  \\

\rm \: =  \: \dfrac{1}{{5}^{(4+5)} }  \\

\rm \: =  \: \dfrac{1}{{5}^{9} }  \\

\rm \: =  \: \dfrac{1}{1953125}  \\

Hence,

\rm\implies \:\boxed{\sf{  \:\rm \: \dfrac{ {10}^{ - 5}  \times 125 \times  {3}^{ - 5} }{ {6}^{ - 5}  \times  {5}^{7} } =   \frac{1}{1953125} }} \\

\large\underline{\bold{Given \:Question - 8(b)}}

Simplify :-

\rm \: \dfrac{ {5}^{4} \times  {x}^{10}   {y}^{5} }{ {5}^{4}  \times  {x}^{7}  {y}^{4} }  \\

\large\underline{\sf{Solution-}}

Given expression is

\rm \: \dfrac{ {5}^{4} \times  {x}^{10}   {y}^{5} }{ {5}^{4}  \times  {x}^{7}  {y}^{4} }  \\

\rm \:  =  \: \dfrac{\cancel{ {5}^{4}} \times  {x}^{10}   {y}^{5} }{ \cancel{{5}^{4}}  \times  {x}^{7}  {y}^{4} }  \\

\rm \: =  \:  {x}^{10 - 7}  \times  {y}^{5 - 4}  \\

\rm \: =  \:  {x}^{3}  \times y

\rm \: =  \:  {x}^{3} y \\

Hence,

\rm\implies \:\boxed{\sf{  \:\rm \: \dfrac{ {5}^{4} \times  {x}^{10}   {y}^{5} }{ {5}^{4}  \times  {x}^{7}  {y}^{4} } =  {x}^{3} y \:  \: }}  \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information:-

\boxed{\sf{  \: {x}^{m}  \times  {x}^{n}  =  {x}^{ m+ n}  \:  \: }} \\

\boxed{\sf{  \: {x}^{0}  = 1 \: }} \\

\boxed{\sf{  \: {x}^{ - n}  =  \frac{1}{ {x}^{n} }  \: }} \\

\boxed{\sf{  \: {\bigg(\dfrac{x}{y}  \bigg) }^{ - n} =  {\bigg(\dfrac{y}{x} \bigg) }^{n}  \:  }} \\

Answered by XxitzZBrainlyStarxX
9

Question:-

Simplify:

\sf\large a) \:  \frac{10 {}^{ - 5} \times 125 \times 3 {}^{ - 5}  }{6 {}^{ - 5}  \times 5 {}^{ - 7} } . \\ \\   \sf \large b) \: \:  \frac{5 {}^{4} \times x {}^{10}y {}^{5}   }{5 {}^{4}  \times x{}^{7}  y {}^{4}   } .

Given:-

\sf\large a) \:  \frac{10 {}^{ - 5} \times 125 \times 3 {}^{ - 5}  }{6 {}^{ - 5}  \times 5 {}^{ - 7} } . \\ \\   \sf \large b) \: \:  \frac{5 {}^{4} \times x {}^{10}y {}^{5}   }{5 {}^{4}  \times x{}^{7}  y {}^{4}   } .

Solution:-

\sf\large a) \:  \frac{10 {}^{ - 5} \times 125 \times 3 {}^{ - 5}  }{6 {}^{ - 5}  \times 5 {}^{ - 7} } . </p><p>

 \sf \large =  \frac{(3) {}^{ - 5} \times (10 ) {}^{ - 5} \times 125 }{(5) {}^{ - 7}  \times (6) {}^{ - 5} }

We know that,

\sf \large (a {}^{m}  \times a {}^{n} = a {}^{m + n}  \:  \: and \:  \: a {}^{m}   \div a {}^{n}  = a {m - n}^{2} ).

\sf \large =  \frac{(3) {}^{ - 5} \times (2 \times 5) {}^{ - 5}  \times 5 {}^{3}  }{(5) {}^{ - 7} \times (3 \times 2) {}^{ - 5}  }  =  \frac{(3) {}^{ - 5}  \times (2) {}^{ - 5}  \times (5) {}^{ - 5} \times 5 {}^{3}  }{5 {}^{ - 7} \times 2 {}^{ - 5}   \times 3 {}^{ - 5} }

\sf \large =  \frac{(5) {}^{ - 5}  \times 5 {}^{3} }{5 {}^{ - 7} }  =  \frac{(5) {}^{ - 2} }{5 {}^{ - 7} }  = 5 {}^{5}

 \sf \large 5 {}^{5} = 3125.

________________________________________

\sf \large b) \: \:  \frac{5 {}^{4} \times x {}^{10}y {}^{5}   }{5 {}^{4}  \times x{}^{7}  y {}^{4}   } .

 \sf \large \frac{5 {}^{4}  \times \:  \:  x {}^{10} y {}^{2}  }{5 {}^{4}   \times \:  \: x {}^{7} y {}^{4} }  = 5 {}^{4 - 4}  \times  \:  \: x {}^{10 - 7} y {}^{5 - 4}

 \sf \large = 5 {}^{0}  \times  \:  \: x {}^{3} y {}^{1}

 \sf \large = 1 \times   \:  \: x{}^{3} y

 \sf \large = x {}^{3} y.

Answer:-

 \sf \large a) \:  \frac{10 {}^{ - 5} \times 125 \times 3 {}^{ - 5}  }{6 {}^{ - 5}  \times 5 {}^{ - 7} }  = 3125.\\ \\   \sf \large b) \: \:  \frac{5 {}^{4} \times x {}^{10}y {}^{5}   }{5 {}^{4}  \times x{}^{7}  y {}^{4}   }  = x {}^{3} y.

Hope you have satisfied.

Similar questions