French, asked by Anonymous, 4 months ago

CH: Ratio
1) If x/a²-b² = y/b²-c²= z/c²-a², then prove that x + y + z = 0.
2) If x/a=y/b=z/c, the prove that each ratio is equal to (3x³-11y³+13z³/3a³-11b³+13c³)^1/3.
3) If x:y:z = 3:4:5 and x³+y³+z³ = 1728, then find (x-y+z).

Give correct answer please. I will mark as brainliest. Please

Answers

Answered by CɛƖɛxtríα
478

____________________________________________

\sf{1)} \large\sf{\frac{x}{ {a}^{2} -  {b}^{2}  }  =  \frac{y}{ {b}^{2}  -  {c}^{2} }  =  \frac{z}{ {c}^{2}  -  {a}^{2} },} \sf{\:then\:prove\:that\:x+y+z=0.}

{\bf{\red{\underline{\underline{Solution:}}}}}

Let's assume that, \large\sf{\frac{x}{ {a}^{2} -  {b}^{2}  }  =  \frac{y}{ {b}^{2}  -  {c}^{2} }  =  \frac{z}{ {c}^{2}  -  {a}^{2} }=k}

\implies{\sf{x=k(a^2-b^2),\:y=k(b^2-c^2),\:z=k(c^2-a^2)}}

\implies{\sf{x+y+z=k(\cancel{a^2}\cancel{-b^2}+\cancel{b^2}\cancel{-c^2}+\cancel{c^2}\cancel{-a^2})}}

\implies{\sf{x+y+z=k\times 0}}

‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎\underline{\boxed{\sf{\therefore x+y+z=0}}}

____________________________________________

\sf{2)\:If} \large\sf{ \frac{x}{a}  =  \frac{y}{b}  =  \frac{z}{c} ,} \sf{then\:prove\:that\:each\:ratio\:is\:equal\:to} \large\sf{{\bigg( \frac{ {3x}^{3}  -  {11y}^{3}  +  {13z}^{3} }{ {3a}^{3} -  {11b}^{3}   +  {13c}^{3} } \bigg)}}^{\frac{1}{3}}.

{\bf{\red{\underline{\underline{Solution:}}}}}

Let, \large\sf{\frac{x}{a}  =  \frac{y}{b}  =  \frac{z}{c}=k}

\implies{\sf{x=ak,\:y=bk\:and\:z=ck}}

\large\sf{\therefore {\bigg( \frac{ {3x}^{3}  -  {11y}^{3}  +  {13z}^{3} }{ {3a}^{3} -  {11b}^{3}   +  {13c}^{3} } \bigg)}}^{\frac{1}{3}}={\bigg(\frac{ {3(ak)}^{3} -  {11(bk)}^{3}   +  {13(ck)}^{3} }{ {3a}^{3} -  {11b}^{3}   +  {13c}^{3} } \bigg)}^{\frac{1}{3}}={\bigg(\frac{ {k}^{3} ( {3a}^{3}  -  {11b}^{3}  +  {13c}^{3}) }{( {3a}^{3}  -  {11b}^{3} +  {13c}^{3})  }\bigg)} ^{\frac{1}{3}}=k

‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎\underline{\boxed{\sf{Hence,\:proved!}}}

____________________________________________

\sf{3)\:If\:x:y:z=3:4:5\:and\:x^3+y^3+z^3=1728,\:then\:find\:(x-y+z).}

{\bf{\red{\underline{\underline{Solution:}}}}}

Let, \sf{x=3a}, \sf{y=4a} and \sf{z=5a}.

Given, \sf{x^3+y^3+z^3=1728}

\implies{\sf{(3a)^3+(4a)^3+(5a)^3=1728}}

\implies{\sf{216a^3=1728}}

\implies{\sf{a^3=8}}

\implies{\sf{a=2}}

\sf{\therefore x-y+z= 3a-4a+5a}

‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎‎\sf{=4a}

‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎‎ ‎\sf{=4\times 2}

‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎‎\sf{=\red{\underline{8}}}

____________________________________________

Answered by MissNobody21
5

Answer:

) \large\sf{\frac{x}{ {a}^{2} - {b}^{2} }</p><p> = \frac{y}{ {b}^{2} - {c}^{2} } </p><p>= \frac{z}{ {c}^{2} - {a}^{2} },}a2−b2x=b2−c2y=c2−a2z,</p><p> \sf{\:then\:prove\:that\:x+y+z=0.}thenprovethatx+y+z=0.</p><p></p><p></p><p>{\bf{\red{\underline{\underline{Solution:}}}}}Solution:</p><p></p><p>Let's assume that, \large\sf{\frac{x}{ {a}^{2} - {b}^{2} }</p><p> = \frac{y}{ {b}^{2} - {c}^{2} }</p><p> = \frac{z}{ {c}^{2} - {a}^{2} </p><p>=k}a2−b2x</p><p>=b2−c2y</p><p>=c2−a2z</p><p>=k</p><p></p><p>\implies{\sf{x=k(a^2-b^2),\:y=</p><p>k(b^2-c^2),\:z=k(c^2-a^2)}}⟹x=k(a2−b2),y</p><p>=k(b2−c2),z</p><p>=k(c2−a2)</p><p></p><p>\implies{\sf{x+y+z=k(\cancel{a^2}\cancel{-b^2}+\cancel{b^2}\cancel{-c^2}+\cancel{c^2}\cancel{-a^2})}}⟹x+y+z=k(a2−b2+b2−c2+c2−a2)</p><p></p><p>\implies{\sf{x+y+z=k\times 0}}⟹x+y+z=k×0</p><p></p><p>‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎\underline{\boxed{\sf{\therefore x+y+z=0}}}∴x+y+z=0</p><p></p><p></p><p>

)If \large\sf{ \frac{x}{a}</p><p> = \frac{y}{b} = \frac{z}{c} ,}ax=by=cz, </p><p>\sf{then\:prove\:that\:each\:ratio\:is\:equal\:to}</p><p></p><p>thenprovethateachratioisequalto \large\sf{{\bigg( \frac{ {3x}^{3} - {11y}^{3} + {13z}^{3} }{ {3a}^{3} - {11b}^{3} + {13c}^{3} } \bigg)}}^{\frac{1}{3}}(3a3−11b3+13c33x3−11y3+13z3)31 .</p><p></p><p>{\bf{\red{\underline{\underline{Solution:}}}}}Solution:</p><p></p><p>Let, \large\sf{\frac{x}{a} = \frac{y}{b} = \frac{z}{c}=k}ax=by=cz=k</p><p></p><p>\implies{\sf{x=ak,\:y=bk\:and\:z=ck}}⟹x=ak,y=bkandz=ck</p><p></p><p>\large\sf{\therefore {\bigg( \frac{ {3x}^{3} - {11y}^{3} + {13z}^{3} }{ {3a}^{3} - {11b}^{3} + {13c}^{3} } \bigg)}}^{\frac{1}{3}}={\bigg(\frac{ {3(ak)}^{3} - {11(bk)}^{3} + {13(ck)}^{3} }{ {3a}^{3} - {11b}^{3} + {13c}^{3} } \bigg)}^{\frac{1}{3}}={\bigg(\frac{ {k}^{3} ( {3a}^{3} - {11b}^{3} + {13c}^{3}) }{( {3a}^{3} - {11b}^{3} + {13c}^{3}) }\bigg)} ^{\frac{1}{3}}=k∴(3a3−11b3+13c33x3−11y3+13z3)31=(3a3−11b3+13c33(ak)3−11(bk)3+13(ck)3)31=((3a3−11b3+13c3)k3(3a3−11b3+13c3))31=k</p><p></p><p>‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎\underline{\boxed{\sf{Hence,\:proved!}}}Hence,proved!</p><p></p><p>

)Ifx:y:z=3:4:5andx3+y3+z3=1728,thenfind(x−y+z).</p><p></p><p>{\bf{\red{\underline{\underline{Solution:}}}}}Solution:</p><p></p><p>Let, \sf{x=3a}x=3a , \sf{y=4a}y=4a and \sf{z=5a}z=5a .</p><p></p><p>Given, \sf{x^3+y^3+z^3=1728}x3+y3+z3=1728</p><p></p><p>\implies{\sf{(3a)^3+(4a)^3+(5a)^3=1728}}⟹(3a)3+(4a)3+(5a)3=1728</p><p></p><p>\implies{\sf{216a^3=1728}}⟹216a3=1728</p><p></p><p>\implies{\sf{a^3=8}}⟹a3=8</p><p></p><p>\implies{\sf{a=2}}⟹a=2</p><p></p><p>\sf{\therefore x-y+z= 3a-4a+5a}∴x−y+z=3a−4a+5a</p><p></p><p>‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎‎\sf{=4a}=4a</p><p></p><p>‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎‎ ‎\sf{=4\times 2}=4×2</p><p></p><p>‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎‎\sf{=\red{\underline{8}}}=8</p><p></p><p>

Similar questions