Math, asked by senguptaanshul, 2 months ago

Ch- trigonometry pls no spam​

Attachments:

Answers

Answered by amansharma264
7

EXPLANATION.

⇒ cos(A).cot(A)/1 - sin(A) = 1 + cosec(A).

As we know that,

From L.H.S we get,

⇒ cos(A).cos(A)/sin(A)/1 - sin(A).

⇒ cos²(A)/sin(A)/1 - sin(A).

⇒ cos²(A)/sin(A)(1 - sin(A)).

⇒ (1 - sin²A)/(sin(A))(1 - sin(A)).

⇒ (1 - sin(A)(1 + sin(A)/sin(A)(1 - sin(A)).

⇒ (1 + sin(A))/sin(A).

⇒ [1/sin(A) + sin(A)/sin(A)].

⇒ cosec(A) + 1.

Hence Proved.

                                                                                                                     

MORE INFORMATION.

(1) = sin²θ + cos²θ = 1.

(2) = 1 + tan²θ = sec²θ.

(3) = 1 + cot²θ = cosec²θ.

Answered by DILhunterBOYayus
6

\sf{\bold{\blue{\underline{\underline{Given}}}}}

  • \sf{\dfrac{cosA.cotA}{1-sinA}=1+cosecA   }  ⠀⠀⠀⠀

\sf{\bold{\red{\underline{\underline{To\:Find}}}}}

  • LHS=RHS⠀⠀⠀⠀

\sf{\bold{\purple{\underline{\underline{Solution}}}}}

LHS:-

:\rightsquigarrow \sf{\dfrac{cosA.cotA}{1-sinA}}

:\implies \bold{\dfrac{cosA \dfrac{cosA}{sinA}}{1-sinA}} 

:\hookrightarrow \tt{\dfrac{\dfrac{cos^{2}A}{sinA}}{1-sinA   }} 

:\longrightarrow \sf{\dfrac{cos^{2}A}{sinA(1-sinA)}   } 

:\dashrightarrow \bold{\dfrac{ 1-sin^{2}A}{sinA(1-sinA)}  } 

:\rightsquigarrow \tt{\dfrac{(1+sinA)(1-sinA)}{sinA(1-sinA)}  }

:\implies \sf{\dfrac{(1+sinA)\cancel{(1-sinA)}}{sinA\cancel{(1-sinA)}}  }

:\longrightarrow \bold{\dfrac{1+sinA}{sinA}   } 

:\dashrightarrow \tt{\dfrac{1}{sinA}+\dfrac{sinA}{sinA}   } 

:\maltese\sf{\blue{cosecA+1}   }=RHS

\therefore{\red{LHS=RHS }}(proved)

Similar questions