World Languages, asked by Itzraisingstar, 5 months ago

chalenge for brainly stars:

show that P(3,m-5) is a point of trisection of the line segment joining the pointsA(4,-2) and B(1,4).hence,find the value of m

Answers

Answered by sshailshetty
21

Your Question:-

Show that P(3,m-5) is a point of trisection of the line segment joining the pointsA(4,-2) and B(1,4).hence,find the value of m

To Find:-

The Value of m

Solution:-

Using Formula:

=>p(x,y)=(mx²+nx1/m+n , my²+ny1/m+n)

=>p(3m-5)=(1×1+2×4/1+2 , 1×4+2×-2/1+2)

=>(1+8/3,4-4/3)

=>(9/3 , 0/3)

=>Corresponding coordinates are equal:

=>m-5=0

=>m=5

Answered by aryan073
4

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

\huge\mathfrak\pink{Solution :-}

\blue\bigstar\underline{\bf{ By \: using \: Section \: formula }}

 \:   \\ \implies \displaystyle \sf{x =  \frac{mx2 + nx1}{m + n}  \: and \:y =  \frac{my2 + ny1}{m + n}   }

\\  \implies\displaystyle\sf{3=\dfrac{4m+n}{m+n}}

\\ \implies\displaystyle\sf{3m+3n=4m+n}

\\ \implies\displaystyle\sf{3m+3n-4m-n=0}

\\ \implies\displaystyle\sf{-m+2n=0}

\\ \implies\displaystyle\sf{m=2n \: n=m/2}

\mapsto\sf{y=\dfrac{my_2+ny_1}{m+n}}

\mapsto\sf{m-5=\dfrac{-2m+4n}{m+n}}

\mapsto\sf{m(m+n)-5(m+n)=-2m+4n}

\mapsto\sf{m^2+mn-5m-5n+2m-4n=0}

\mapsto\sf{m^2+mn-3m-9n=0}

\mapsto\sf{m^2+\dfrac{m(m)}{2}-9m-\dfrac{9m}{2}=0}

\mapsto\sf{m^2+\dfrac{m^2}{2}-9m-\dfrac{9m}{2}=0}

\mapsto\sf{2m^2+m^2-18m-9m=0}

\mapsto\sf{3m^2-27m=0}

\mapsto\sf{m(3m)=27m}

\mapsto\sf{m=\dfrac{27m}{3m}=\cancel\dfrac{27}{3}=9}

\bigstar\underline{\boxed{\sf{the \: value \: of m \: is 9}}}

Similar questions