Math, asked by SweetestBitter, 1 month ago

CHALLENGE FOR ALL MATH LOVING BRAINLIANS !!


GIVEN :
 \large \boxed{ \sf {5  \frac{3}{ x} \times y\frac{1}{2}}  =  19}


TO FIND :
The apt value of x and y that satisfies the above condition.



FOR CLARITY :
Refer the Attachment.



No Spams and Copied Answers please !​

Attachments:

Answers

Answered by mathdude500
8

\large\underline{\sf{Given- }}

\rm :\longmapsto\:{ \rm {5 \dfrac{3}{ x}  \: \times \:  y\dfrac{1}{2}}  \: =  \: 19}

\large\underline{\sf{To\:Find - }}

The values of x and y

\large\underline{\sf{Solution-}}

Given that

\rm :\longmapsto\:{ \rm {5 \dfrac{3}{ x}  \: \times \:  y\dfrac{1}{2}}  \: =  \: 19}

Let we first convert the mixed fraction to rational form

\rm :\longmapsto\:{ \rm { \dfrac{5x + 3}{ x}  \: \times \: \dfrac{2y + 1}{2}}  \: =  \: 19}

\rm :\longmapsto\:(5x + 3)(2y + 1) = 19 \times 2x

\rm :\longmapsto\:(5x + 3)(2y + 1) = 38x

\rm :\longmapsto\:(5x + 3)(2y + 1) = 38 \times x

So, two cases arises,

\rm :\longmapsto\:5x + 3 = 38 \:  \:  \: or \:  \:  \: 5x + 3 = x

\rm :\longmapsto\:5x = 38 - 3 \:  \:  \: or \:  \:  \: 5x - x =  - 3

\rm :\longmapsto\:5x = 35 \:  \:  \: or \:  \:  \: 4x =  - 3

\bf\implies \:x = 7 \:  \:  \: or \:  \:  \: x =  - \dfrac{3}{4}  \:  \{rejected \}

So,

\bf\implies \:5x + 3 = 38

and

\bf\implies \:2y + 1 = x

\bf\implies \:2y + 1 = 7

\bf\implies \:2y  = 7 - 1

\bf\implies \:2y  = 6

\bf\implies \:y  = 3

Thus,

The values of x and y, satisfy

\rm :\longmapsto\:{ \rm {5 \dfrac{3}{ x}  \: \times \:  y\dfrac{1}{2}}  \: =  \: 19}

are

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \large\boxed{ \rm{ x = 7 \:  \:  \: and \:  \:  \: y = 3}}

Justification :-

Consider,

\rm :\longmapsto\:{ \rm {5 \dfrac{3}{ x}  \: \times \:  y\dfrac{1}{2}}  \: }

On substituting the value of x and y, we get

\rm  \:  =  \: \:{ \rm {5 \dfrac{3}{7}  \: \times \:  3\dfrac{1}{2}}  \: }

\rm  \:  =  \: \:{ \rm {\dfrac{35 + 3}{7}  \: \times \:  \dfrac{6 + 1}{2}}  \: }

\rm  \:  =  \: \:{ \rm {\dfrac{38}{7}  \: \times \:  \dfrac{7}{2}}  \: }

\rm \:  =  \:  \: 19

Hence, Justified

Answered by rohithkrhoypuc1
5

Answer:

☆Given:-

5 3 × y 1 =19

x 2

To find :-

Want to find the values of x and y .

Proof:-

Already given that

5 3 × y 1 =19.

x 2

We should convert the equation into mixed fraction to rational form

= 5x+3 × 2y +1 =19

x 2

(5x+3)×(2y+1)= 19 ×2x

(5x+3)×(2y+1)=38x

In this equation we can take two cases will apears

5x+3=38 , 5x+3=x

5x=38-3 , 5x-x=-3

5x=35 , 4x= -3

x=7 , x=-3/4.

We cant can't take the '-' value in equation so,

x=7.

And now,

2y+1=x(x=7)

2y+1=7

2y=7-1

2y=6

y=6/2

y=3

The value of x =7, y=3.

And substituting the value of x and y in equation we get

=5 3 × 3 1

7 2

= 35+3 × 6+1

7 2

=38 × 7

7 2

=19.

Hope it helps u mate.

Thank you.

Similar questions