challenge for all user to solve it...
Answers
QUESTION:-
Prove that Cosec⁶ θ = Cot⁶ θ + 3 Cot² θ Cosec² θ + 1.
GIVEN:-
Cosec⁶ θ = Cot⁶ θ + 3 Cot² θ Cosec² θ + 1.
TO PROVE:-
Cosec⁶ θ = Cot⁶ θ + 3 Cot² θ Cosec² θ + 1.
PROOF:-
Take Cosec⁶ θ as L.H.S.
Take Cot⁶ θ + 3 Cot² θ Cosec² θ + 1 as R.H.S.
⭐L.H.S ⭐
Cosec⁶ θ = (Cosec² θ)³
Cosec⁶ θ = (1 + Cot² θ)³
Cosec⁶ θ = 1³ + (Cot² θ)³ + 3(1)(Cot² θ)(1 + Cot² θ)
Cosec⁶ θ = 1 + Cot⁶ θ + 3Cot² θ(1 + Cot² θ)
Cosec⁶ θ = 1 + Cot⁶ θ + 3Cot² θ(Cosec² θ)
Cosec⁶ θ = 1 + Cot⁶ θ + 3 Cot² θ Cosec² θ
Cosec⁶ θ = Cot⁶ θ + 3 Cot² θ Cosec² θ + 1
⭐R.H.S ⭐
Cot⁶ θ + 3 Cot² θ Cosec² θ + 1
L.H.S = R.H.S
Cosec⁶ θ = Cot⁶ θ + 3 Cot² θ Cosec² θ + 1
HENCE PROVED!
VERIFICATION:-
Cosec⁶ θ = Cot⁶ θ + 3 Cot² θ Cosec² θ + 1
Substitute θ = 45°
Cosec⁶ 45° = Cot⁶ 45° + 3 Cot² 45° Cosec² 45° + 1
(√2)⁶ = 1 + 3(1)²(√2)² + 1
(√2)⁶ = (√2 ×√2 × √2 × √2 × √2 × √2)
(√2)⁶ = (2 × 2 × 2)
(√2)⁶ = 8
8 = 1 + 3(2) + 1
8 = 1 + 6 + 1
8 = 8
HENCE VERIFIED!
Answer:
QUESTION:-
Prove that Cosec⁶ θ = Cot⁶ θ + 3 Cot² θ Cosec² θ + 1.
GIVEN:-
Cosec⁶ θ = Cot⁶ θ + 3 Cot² θ Cosec² θ + 1.
TO PROVE:-
Cosec⁶ θ = Cot⁶ θ + 3 Cot² θ Cosec² θ + 1.
PROOF:-
Take Cosec⁶ θ as L.H.S.
Take Cot⁶ θ + 3 Cot² θ Cosec² θ + 1 as R.H.S.
↣L.H.S
Cosec⁶ θ = (Cosec² θ)³
Cosec⁶ θ = (1 + Cot² θ)³
Cosec⁶ θ = 1³ + (Cot² θ)³ + 3(1)(Cot² θ)(1 + Cot² θ)
Cosec⁶ θ = 1 + Cot⁶ θ + 3Cot² θ(1 + Cot² θ)
Cosec⁶ θ = 1 + Cot⁶ θ + 3Cot² θ(Cosec² θ)
Cosec⁶ θ = 1 + Cot⁶ θ + 3 Cot² θ Cosec² θ
Cosec⁶ θ = Cot⁶ θ + 3 Cot² θ Cosec² θ + 1
↣R.H.S
Cot⁶ θ + 3 Cot² θ Cosec² θ + 1
L.H.S = R.H.S
Cosec⁶ θ = Cot⁶ θ + 3 Cot² θ Cosec² θ + 1
HENCE PROVED!
VERIFICATION:-
Cosec⁶ θ = Cot⁶ θ + 3 Cot² θ Cosec² θ + 1
Substitute θ = 45°
Cosec⁶ 45° = Cot⁶ 45° + 3 Cot² 45° Cosec² 45° + 1
(√2)⁶ = 1 + 3(1)²(√2)² + 1
(√2)⁶ = (√2 ×√2 × √2 × √2 × √2 × √2)
(√2)⁶ = (2 × 2 × 2)
(√2)⁶ = 8
8 = 1 + 3(2) + 1
8 = 1 + 6 + 1
8 = 8