Math, asked by Shatakshi96, 1 year ago

##CHALLENGE FOR EVERYONE##

**LET'S SEE WHO CAN SOLVE THIS QUESTION**

Q. Prove thàt;
 \frac{1  -   \tan \alpha  }{1 +  \tan\alpha }  =  { \cos}^{2}  \alpha  +   { \sin}^{2}  \alpha
**NO USELESS ANS. PLEASE**

Answers

Answered by nitthesh7
3
The ques should be 1-tanα / 1+tanα = cos²α - sin²α
_______________________________________________________

Taking LHS

= 1-tanα / 1+tanα

= 1/1-sinα/cosα / 1/1+sinα/cosα

= cosα-sinα/cosα / cosα+sinα/cosα

= cosα-sinα / cosα+sinα

= (cosα-sinα)(cosα+sinα) / (cosα+sinα)(cosα+sinα)

= (cos²α -sin²α) / (cos²α+sin²α)

= (cos²α-sin²α) / (1)²

(because sin²α+cos²α = 1)

= cos²α - sin²α   = RHS

Hence Proved
__________________________________________________


☺☺☺ Hope this Helps ☺☺☺


Shatakshi96: thx.
nitthesh7: NM Give some more challenges
Shatakshi96: If I get any good question that time I will ask..
nitthesh7: HM....
nitthesh7: TQ for Brainliest
nitthesh7: give some more challenges sis
Answered by jacob909
0

Answer:

☺️☺️☺️☺️☺️hope it helps☺️☺️☺️☺️☺️

Attachments:
Similar questions