Math, asked by brainlyquestionnaire, 4 months ago

Challenge For Mod and Brainly star ​

Attachments:

Answers

Answered by shadowsabers03
22

Given,

\longrightarrow AB=rI

Taking the determinant,

\longrightarrow |AB|=|rI|

Since A and B are of order 3 each,

\longrightarrow AB=\left[\begin{array}{ccc}r&0&0\\0&r&0\\0&0&r\end{array}\right]

\longrightarrow |AB|=r^3

\longrightarrow |A||B|=r^3\quad\quad\dots(1)

Then,

\longrightarrow |\mathrm{adj}(AB)|=|AB|^2

[because |\mathrm{adj}(A)|=|A|^{n-1} if n is order of square matrix A.]

\longrightarrow |\mathrm{adj}(AB)|=r^6\quad\quad\dots(2)

Let (ab)_{ij} be the element of AB in i'th row and j'th column.

The element (ab)_{12} is given by,

\longrightarrow a_{11}b_{12}+a_{12}b_{22}+a_{13}b_{32}=(ab)_{12 }

\longrightarrow \alpha b_{12}+b_{22}-3r =0

\longrightarrow \alpha b_{12}+b_{22}=3r\quad\quad\dots(i)

The element (ab)_{22} is given by,

\longrightarrow a_{21}b_{12}+a_{22}b_{22}+a_{23}b_{32}=(ab)_{22 }

\longrightarrow b_{12}+2b_{22}-\dfrac{9}{2}\,r =r

\longrightarrow b_{12}+2b_{22}=\dfrac{11}{2}\,r\quad\quad\dots(ii )

The element (ab)_{32} is given by,

\longrightarrow a_{31}b_{12}+a_{32}b_{22}+a_{33}b_{32}=(ab)_{32 }

\longrightarrow 3b_{12}+b_{22}-\dfrac{3}{2}\,r=0

\longrightarrow 3b_{12}+b_{22}=\dfrac{3}{2}\,r\quad\quad\dots(iii )

Solving (ii) and (iii) we get,

  • b_{12}=-\dfrac{r}{2 }
  • b_{22}=3r

Then from (i), since r\neq0, we get,

\longrightarrow \alpha=0

So,

\longrightarrow A=\left[\begin{array}{ccc}0&1&2\\1&2&3\\3&1&1\end{array}\right]

\longrightarrow |A|=(3\cdot3-1\cdot1)+2(1\cdot1-2\cdot3)

\longrightarrow |A|=-2

Given,

\longrightarrow |\mathrm{adj}(B) |=r^5

\longrightarrow |B|^2 =r^5

\longrightarrow |B|=r^{\frac{5}{2}}

Then (1) becomes,

\longrightarrow -2r^{\frac{5}{2}}=r^3

\longrightarrow \left( -2r^{\frac{5}{2}} \right)^2=\left(r^3\right)^2

\longrightarrow 4r^5=r^6

Since r\neq0,

\longrightarrow r= 4

And then (2) becomes,

\longrightarrow |\mathrm{adj}(AB)| =4 ^6

\longrightarrow\underline{\underline{|\mathrm{adj}(AB)|=2^{12}}}

Hence (2) is the answer.

Similar questions