Math, asked by guptaananya2005, 7 hours ago

Challenge for You
A natural number n(n\geq 2)\text{,}n(n≥2), always satisfy the equation
\boxed{x^{n}-1=(x-1)(x^{n-1}+x^{n-2}+\cdots+x+1)\text{.}}
Find the remainder when x^{15}+x^{14}+x^{13}+x^{12}+x+1 is divided by x^{4}+x^{3}+x^{2}+x+1\text{.}

Attachments:

Answers

Answered by ykatkar792
0

Answer:

1 to 100

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97

25 101 - 200 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199

Answered by mathdude500
4

Given Question :-

 \sf \: A \: natural \: number \: n \geqslant 2 \: satisfy \: the \: equation

\red{ \boxed{ \sf{ \: {x}^{n} - 1 = (x - 1)( {x}^{n - 1} +  {x}^{n - 2} +  -  -  -  +  {x}^{3} +  {x}^{2} + x + 1)}}}

Find the remainder when

 \sf \: {x}^{15}  +  {x}^{14} +  {x}^{13}  +  {x}^{12}   + x + 1 \: is \: divided \: by \: {x}^{4}  +  {x}^{3}  +  {x}^{2}  + x + 1

Note :- Don't use Long Division.

\large\underline{\sf{Solution-}}

Given polynomial is

\rm :\longmapsto\: {x}^{15} +  {x}^{14} +  {x}^{13} +  {x}^{12} + x + 1

and other polynomial is

\rm :\longmapsto\: {x}^{4} +  {x}^{3}  +  {x}^{2} + x + 1

Now, we have to find the remainder when

\rm :\longmapsto\:\dfrac{ {x}^{15}  +  {x}^{14} +  {x}^{13}  +  {x}^{12}   + x + 1}{ {x}^{4}  +  {x}^{3}  +  {x}^{2}  + x + 1}

can be rewritten as

\rm \:  =  \: \dfrac{{x}^{15}  +  {x}^{14} +  {x}^{13}  +  {x}^{12} +  {x}^{11} -  {x}^{11}    + x + 1}{{x}^{4}  +  {x}^{3}  +  {x}^{2}  + x + 1}

\rm \:  =  \: \dfrac{({x}^{15}  +  {x}^{14} +  {x}^{13}  +  {x}^{12} +  {x}^{11}) + x -  {x}^{11} + 1}{{x}^{4}  +  {x}^{3}  +  {x}^{2}  + x + 1}

\rm \:  =  \: \dfrac{ {x}^{11} ({x}^{4}  +  {x}^{3} +  {x}^{2}  +  {x}^{} + 1) + x(1 -  {x}^{10}) + 1}{{x}^{4}  +  {x}^{3}  +  {x}^{2}  + x + 1}

\rm \:  =  \:\dfrac{{x}^{11}({x}^{4}  +  {x}^{3}  +  {x}^{2}  + x + 1)}{{x}^{4}  +  {x}^{3}  +  {x}^{2}  + x + 1} - \dfrac{ x({x}^{10} - 1) + 1}{{x}^{4}  +  {x}^{3}  +  {x}^{2}  + x + 1}

\rm \:  =   {x}^{11}  - \dfrac{ x({x}^{5} - 1)( {x}^{5}  + 1)}{{x}^{4}  +  {x}^{3}  +  {x}^{2}  + x + 1} + \dfrac{1}{{x}^{4}  +  {x}^{3}  +  {x}^{2}  + x + 1}

Now,

\red{ \boxed{ \sf{ \: {x}^{5} - 1 = (x - 1)({x}^{4}  +  {x}^{3}  +  {x}^{2}  + x + 1)}}}  \\ \\ \red{\boxed{ \sf{ \: \frac{ {x}^{5}  - 1}{{x}^{4}  +  {x}^{3}  +  {x}^{2}  + x + 1} = x - 1}}} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

So, using this, above can be rewritten as

\rm \:  =  \:  {x}^{11} - x( {x}^{5} + 1)(x - 1) + \dfrac{1}{{x}^{4}  +  {x}^{3}  +  {x}^{2}  + x + 1}

So, when

\rm :\longmapsto\: {x}^{15} +  {x}^{14} +  {x}^{13} +  {x}^{12} + x + 1

is divided by

\rm :\longmapsto\:{x}^{4}  +  {x}^{3}  +  {x}^{2}  + x + 1

Then,

\bf\implies \:Remainder \: is  \: 1

Similar questions