Math, asked by Itzheartcracer, 3 days ago

Challenge time!!
The equation \bf\dfrac{24x^2+25x-47}{ax-2}=-8x-3-\bf\dfrac{53}{ax-2} is true for all values of x ≠ 2/a. Where ''a'' is constant. Then find the value of a?
Note - If you aren't able to see the question please scroll to your right or refer to the attachment.

Attachments:

Answers

Answered by mathdude500
21

\large\underline{\sf{Solution-}}

Given expression is

\rm :\longmapsto\:\rm\dfrac{24x^2+25x-47}{ax-2}=-8x-3-\dfrac{53}{ax-2}

On taking LCM on RHS, we get

\rm :\longmapsto\:\rm\dfrac{24x^2+25x-47}{ax-2}=\dfrac{( - 8x - 3)(ax - 2) - 53}{ax-2}

\rm :\longmapsto\:\rm24x^2+25x-47=( - 8x - 3)(ax - 2) - 53

\rm :\longmapsto\:\rm24x^2+25x-47 + 53=( - 8x - 3)(ax - 2)

\rm :\longmapsto\:\rm24x^2+25x + 6= - 8a {x}^{2} + 16x - 3ax + 6

\rm :\longmapsto\:\rm24x^2+25x= - 8a {x}^{2} + (16 - 3a)x

On comparing the coefficients, we get

\rm :\longmapsto\:24 =  - 8a \:  \: and \:  \: 25 = 16 - 3a

\rm :\longmapsto\:a=   - \dfrac{24}{8} \:  \: and \:  \: 25 - 16 = - 3a

\rm :\longmapsto\:a=   - 3 \:  \: and \:  \: 9 = - 3a

\rm :\longmapsto\:a=   - 3 \:  \: and \:  \:  - 3 = a

\bf\implies \:a \:  =  \:  -  \: 3

Answered by WaterPricecess
17

\huge\underline{\sf{Solution-}}

Given expression is

</p><p>\rm :\longmapsto\:\rm\dfrac{24x^2+25x-47}{ax-2}=-8x-3-\dfrac{53}{ax-2}:⟼ </p><p>ax−2</p><p>24x </p><p>2</p><p> +25x−47</p><p></p><p> =−8x−3− </p><p>ax−2</p><p>53

On taking LCM on RHS, we get

</p><p>\rm :\longmapsto\:\rm\dfrac{24x^2+25x-47}{ax-2}=\dfrac{( - 8x - 3)(ax - 2) - 53}{ax-2}:⟼ </p><p>ax−2</p><p>24x </p><p>2</p><p> +25x−47</p><p></p><p> = </p><p>ax−2</p><p>(−8x−3)(ax−2)−53</p><p>

</p><p>\rm :\longmapsto\:\rm24x^2+25x-47=( - 8x - 3)(ax - 2) - 53:⟼24x </p><p>2</p><p> +25x−47=(−8x−3)(ax−2)−53

\rm :\longmapsto\:\rm24x^2+25x-47 + 53=( - 8x - 3)(ax - 2):⟼24x </p><p>2</p><p> +25x−47+53=(−8x−3)(ax−2)</p><p>

Number=65

\rm :\longmapsto\:\rm24x^2+25x= - 8a {x}^{2} + (16 - 3a)x:⟼24x </p><p>2</p><p> +25x=−8ax </p><p>2</p><p> +(16−3a)x</p><p>

On comparing the coefficients, we get

\rm :\longmapsto\:24 = - 8a \: \: and \: \: 25 = 16 - 3a:⟼24=−8aand25=16−3a

\rm :\longmapsto\:a= - \dfrac{24}{8} \: \: and \: \: 25 - 16 = - 3a:⟼a=− </p><p>8</p><p>24

and 25 − 16= −3a

</p><p>\rm :\longmapsto\:a= - 3 \: \: and \: \: 9 = - 3a:⟼a=−3and9=−3a

\rm :\longmapsto\:a= - 3 \: \: and \: \: - 3 = a:⟼a=−3and−3=a

\bf\implies \:a \: = \: - \: 3⟹a=−3

Similar questions