Math, asked by Jafar2007, 5 hours ago

∆Challenge to all BRAINLY USERS
 \frac{ {a}^{ - 1} }{ {a}^{ - 1}  +  {b }^{ - 1} }  +  \frac{ {a}^{ - 1} }{ {a }^{ - 1}  -  {b}^{ - 1} }  =  \frac{2 {b}^{2} }{ {b}^{2} -  {a}^{2}  }

Answers

Answered by user0888
91

One can multiply 1 to both fractions on the LHS. The answer is quite simple.

We know:-

\rightarrow\dfrac{ab}{ab}=1\ (ab\neq0)

So we are going to multiply 1.

Calculation:-

\rightarrow1\times\dfrac{a^{-1}}{a^{-1}+b^{-1}}+1\times\dfrac{a^{-1}}{a^{-1}-b^{-1}}

=\dfrac{ab}{ab}\times\dfrac{a^{-1}}{a^{-1}+b^{-1}}+\dfrac{ab}{ab}\times\dfrac{a^{-1}}{a^{-1}-b^{-1}}

=\dfrac{b}{b+a}+\dfrac{b}{b-a}

=\dfrac{b(b-a)+b(b+a)}{(b+a)(b-a)}

=\dfrac{b^2-ab+b^2+ab}{b^2-a^2}

=\dfrac{2b^2}{b^2-a^2}

Hence proven.

Answered by tname428
68

Step-by-step explanation:

given :

  • ∆Challenge to all BRAINLY USERS
  •  \frac{ {a}^{ - 1} }{ {a}^{ - 1} + {b }^{ - 1} } + \frac{ {a}^{ - 1} }{ {a }^{ - 1} - {b}^{ - 1} } = \frac{2 {b}^{2} }{ {b}^{2} - {a}^{2} }

to find :

  •  \frac{ {a}^{ - 1} }{ {a}^{ - 1} + {b }^{ - 1} } + \frac{ {a}^{ - 1} }{ {a }^{ - 1} - {b}^{ - 1} } = \frac{2 {b}^{2} }{ {b}^{2} - {a}^{2} }

solution:

  • please check the attached file

Attachments:
Similar questions