Math, asked by priyanshu7777, 1 year ago

Challenger question
Accept challenge
(question taken from aakash book)

Attachments:

Answers

Answered by Anonymous
53

Solution :-

Q: 1/(1 + √2) + 1/(√2 + √3) + 1/(√3 + √4) + 1/(√4 + √5) + 1/(√5 + √6) + 1/(√6 + √7) + 1/(√7 + √8) + 1/(√8 + √9) = 2

L.H.S, 1/(1 + √2) × (1 - √2)/(1 - √2) + 1/(√2 + √3) × (√2 - √3)/(√2 - √3) + 1/(√3 + √4) × (√3 - √4)/(√3 - √4) + 1/(√4 + √5) × (√4 - √5)/(√4 - √5) + 1/(√5 + √6) × (√5 - √6)/(√5 - √6) + 1/(√6 + √7) × (√6 - √7)/(√6 - √7) + 1/(√7 + √8) × (√7 - √8)/(√7 - √8) + 1/(√8 + √9) × (√8 - √9)/(√8 - √9)

= (1 - √2)/(1 - 2) + (√2 - √3)/(2 - 3) + (√3 - √4)/(3 - 4) + (√4 - √5)/(4 - 5) + (√5 - √6)/(5 - 6) + (√6 - √7)/(6 - 7) + (√7 - √8)/(7 - 8) + (√8 - √9)/(8 - 9)

= (1 - √2)/(-1) + (√2 - √3)/(-1) + (√3 - √4)/(-1) + (√4 - √5)/(-1) + (√5 - √6)/(-1) + (√6 - √7)/(-1) + (√7 - √8)/(-1) + (√8 - √9)/(-1)

= - (1 - √2) - (√2 - √3) - (√3 - √4) - (√4 - √5) - (√5 - √6) - (√6 - √7) - (√7 - √8) - (√8 - √9)

= - 1 + √2 - √2 + √3 - √3 + √4 - √4 + √5 - √5 + √6 - √6 + √7 - √7 + √8 - √8 + √9

= - 1 + √9

= - 1 + 3

= 2 _______ R.H.S

Hence, proved

Answered by Anonymous
22

 \huge \underline \mathfrak {Solution:-}

LHS =

 \frac{1}{ 1  +  \sqrt{2} }    + \frac{1}{ \sqrt{ 2}  +  \sqrt{3} }  +   \frac{1}{ \sqrt{3 }  +  \sqrt{4} } \\  +   \frac{1}{ \sqrt{ 4}  +  \sqrt{5} }  +   \frac{1}{ \sqrt{ 5}  +  \sqrt{6} } +   \frac{1}{ \sqrt{ 6}  +  \sqrt{7} } \\  +   \frac{1}{ \sqrt{ 7}  +  \sqrt{8} }   +   \frac{1}{ \sqrt{8 }  +  \sqrt{9} }  \\  \\ on \: rationalising  \: them\\  \\   = \frac{1 -  \sqrt{2}  }{1 - 2}  +  \frac{ \sqrt{2}  -  \sqrt{3} }{2 - 3}  +  \frac{ \sqrt{3}  -  \sqrt{4} }{3 - 4}  \\  \\  +  \frac{ \sqrt{4}  -  \sqrt{5} }{4 - 5}  +  \frac{ \sqrt{5}  -  \sqrt{6} }{5 - 6}  +  \frac{ \sqrt{6}  -  \sqrt{7} }{6 - 7}  \\  \\  +  \frac{ \sqrt{7}  -  \sqrt{8} }{7 - 8}  +  \frac{ \sqrt{8}  -  \sqrt{9} }{8 - 9}

 =  - 1 +  \sqrt{2}  -  \sqrt{2}  +  \sqrt{3}  -  \sqrt{3}   \\  \\ +  \sqrt{4}  -  \sqrt{4}  +  \sqrt{5}   -  \sqrt{5} +  \sqrt{6}   -  \sqrt{6}   \\  \\ +  \sqrt{7}  -  \sqrt{7}  +  \sqrt{8}  -  \sqrt{8}  +  \sqrt{9}  \\  \\   =  - 1 +  \sqrt{9}  \\  \\   =  - 1 +  \sqrt{3 \times 3}  \\  \\  =  - 1 + 3 \\  \\  = 2

=RHS

Hence proved.

Similar questions