Challenger question
Accept challenge
(question taken from aakash book)
Answers
Solution :-
Q: 1/(1 + √2) + 1/(√2 + √3) + 1/(√3 + √4) + 1/(√4 + √5) + 1/(√5 + √6) + 1/(√6 + √7) + 1/(√7 + √8) + 1/(√8 + √9) = 2
L.H.S, 1/(1 + √2) × (1 - √2)/(1 - √2) + 1/(√2 + √3) × (√2 - √3)/(√2 - √3) + 1/(√3 + √4) × (√3 - √4)/(√3 - √4) + 1/(√4 + √5) × (√4 - √5)/(√4 - √5) + 1/(√5 + √6) × (√5 - √6)/(√5 - √6) + 1/(√6 + √7) × (√6 - √7)/(√6 - √7) + 1/(√7 + √8) × (√7 - √8)/(√7 - √8) + 1/(√8 + √9) × (√8 - √9)/(√8 - √9)
= (1 - √2)/(1 - 2) + (√2 - √3)/(2 - 3) + (√3 - √4)/(3 - 4) + (√4 - √5)/(4 - 5) + (√5 - √6)/(5 - 6) + (√6 - √7)/(6 - 7) + (√7 - √8)/(7 - 8) + (√8 - √9)/(8 - 9)
= (1 - √2)/(-1) + (√2 - √3)/(-1) + (√3 - √4)/(-1) + (√4 - √5)/(-1) + (√5 - √6)/(-1) + (√6 - √7)/(-1) + (√7 - √8)/(-1) + (√8 - √9)/(-1)
= - (1 - √2) - (√2 - √3) - (√3 - √4) - (√4 - √5) - (√5 - √6) - (√6 - √7) - (√7 - √8) - (√8 - √9)
= - 1 + √2 - √2 + √3 - √3 + √4 - √4 + √5 - √5 + √6 - √6 + √7 - √7 + √8 - √8 + √9
= - 1 + √9
= - 1 + 3
= 2 _______ R.H.S
Hence, proved
LHS =
=RHS
Hence proved.