Math, asked by priyanshu7777, 1 year ago

Challenger question for maths lovers

Attachments:

Answers

Answered by Anonymous
11

Answer \:  \\  \\ Given \:  \: Quadratic \:  \: polynomials \:  \: is \:  \\  \\ f(x) = x {}^{2}  - 3x - 2 \\ having \:  \:  \alpha  \: and \:  \beta  \: its \: two \: roots \\  \\  \alpha  +  \beta  =  \frac{ 3}{1}  \:  \:  \: and \:  \:  \:  \alpha  \beta  =  \frac{ - 2}{ 1}  \\  \\  \alpha  +  \beta  = 3 \:  \:  \:  \: and \:  \:  \:  \alpha  \beta  =  - 2 \\  \\ let \: the \: required \: quadratic \: polynomial \: be \: p(x) \\  \\ p(x) = x {}^{2}  - ( \frac{1}{2 \alpha  +  \beta }  +  \frac{1}{2  \beta  +  \alpha })x + ( \frac{1}{2 \alpha  +  \beta }  \times  \frac{1}{2 \beta  +  \alpha } ) \\  \\ p(x) = x {}^{2}  - ( \frac{2 \beta  +  \alpha  + 2 \alpha  +  \beta) }{(2 \alpha  +  \beta )(2 \beta  +  \alpha )}) x +  \frac{1}{(2 \alpha  +  \beta )(2 \beta  +  \alpha )}  \\  \\ p(x) = x {}^{2}  - ( \frac{3 \alpha  + 3 \beta }{4 \alpha  \beta  + 2 \alpha  {}^{2}  + 2 \beta  {}^{2}  +  \alpha  \beta } )x +   \frac{1}{(5 \alpha  \beta  + 2( \alpha  {}^{2}  +  \beta  {}^{2} ))} \\  \\ p(x) = x {}^{2}  - ( \frac{3( \alpha  +  \beta )}{5 \alpha  \beta  + 2( \alpha  {}^{2}  +  \beta  {}^{2}) } ) x+  \frac{1}{5 \alpha  \beta   + 2( \alpha { }^{2}    +  \beta  {}^{2} ) }  \\  \\ p(x) = x {}^{2}  -  (\frac{3(3)}{5( - 2) + 2((3) {}^{2}  - 2( - 2))}) x +  \frac{1}{5( - 2) + 2((3) {}^{2}  - 2( - 2))}  \\  \\ p(x) = x {}^{2}  -  (\frac{ 9}{  16} )x +  \frac{1}{ 16}  \\  \\ p(x) = x {}^{2}    -  ( \frac{9}{16} )x  +  \frac{1}{16}  \\  \\ p(x) =(16x {}^{2}  - 9x  +  1)  \frac{1}{16} \\  \\ so \: the \: required \: quadratic \: polynomial \: is \:  \\  \\ p(x) = (16x {}^{2}  - 9x + 1) \frac{1}{16}  \\  \\ and \: the \: required \: equation \: is \\  \\ 16x {}^{2}   - 9x + 1 = 0 \\  \\ NOTE \:  \\  \\ ( \alpha  {}^{2}  +  \beta  {}^{2} ) = ( \alpha  +  \beta ) {}^{2}  - 2 \alpha  \beta

Similar questions