Math, asked by Anonymous, 1 year ago

❤️ Challenging Question ❤️

Differentiate :-

No spam .

Quality Answer Required .

I will mark brainliest . ✌️

Attachments:

Answers

Answered by siddhartharao77
19

Given : y = \sqrt{\frac{1 - sin2x}{1 + sin2x}}

We know that cos^2x + sin^2x = 1 and sin2x = 2cosxsinx

= > \sqrt{\frac{cos^2x + sin^2x - 2cosxsinx}{cos^2x + sin^2x + 2cosxsinx}}

We know that a^2 + b^2 - 2ab = (a - b)^2 and a^2 + b^2 + 2ab = (a + b)^2

= > \sqrt{\frac{(cosx - sinx)^2}{(cosx + sinx)^2}}

= > \frac{cosx - sinx}{cosx + sinx}

Divide the numerator and denominator by 'cosx', we get

= > \frac{cosx(1 - \frac{sinx}{cosx})}{cosx(1 + \frac{sinx}{cosx})}

= > \frac{1 - tanx}{1 + tanx}

= > \frac{1 - tanx}{1 + (1) * tanx}

We know that tan(π/4) = 1.

= > \frac{tan(\frac{\pi }{4} - tanx)}{1 + tan(\frac{\pi}{4}) * tan x}

We know that tan(A - B) = tanA - tanB/(1 - tanA * tanB)

= > tan(\frac{\pi}{4} - x)


Differentiation:

= > y = tan(\frac{\pi}{4} - x)

= > \frac{dy}{dx} = \frac{d}{dx}(tan(\frac{\pi}{4} - x))

Let v = (π/4 - x)

= > \frac{d}{dv}(tan(v))\frac{d}{dx}(\frac{\pi}{4} - x)

= > sec^2(v)(-1)

= > sec^2(\frac{\pi}{4} - x)(-1)

= > -sec^2(\frac{\pi}{4} - x)


So,

= > \frac{dy}{dx} = -sec^2(\frac{\pi}{4} - x)

(or)

= > \boxed{\frac{dy}{dx} + sec^2(\frac{\pi}{4} - x) = 0}



Hope it helps!


alishausmani: well don't say that.I did nothing yrr
siddhartharao77: Thank u!
Similar questions