English, asked by ananyaachandak5191, 2 months ago

Chancel opted wooden stick With______ Than phosphorus

Answers

Answered by DebasisTarini
0

Answer:

Instead of using phosphorus, Chancel elected to coat wooden stick with potassium chlorate, sulfur, sugar, rubber, and then dip that stick into the small asbestos bottle filled with sulfuric acid.

Answered by Klrahulhere
0

Explanation:

༒ Question ➽

If θ is Acute angle and 3sinθ = 4cosθ then Find out the value of 4sin2θ - 3cos2θ + 2.

___________________________

༒ Given ➽

 \large \sf3sin \theta = 4cos\theta

___________________________

༒ To Find ➽

 \sf \large 4sin2\theta - 3cos2\theta + 2

___________________________

༒ Solution ➽

As

 \sf3sin\theta = 4cos\theta \\  \\  \implies \sf \dfrac{sin\theta }{cos \theta }  =   \frac{4}{3}  \\  \\  \implies \large \boxed{ \bf tan\theta =  \frac{4}{3} }

So,

 \sf {tan}^{2} \theta =  \frac{16}{9}  \\  \\  \sf \implies {sec}^{2} \theta = 1 +  \frac{16}{9}  \\  \: \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \{  \because\bf  {sec}^{2} \theta = 1 + tan {}^{2} \theta \} \\  \\  =  \sf \frac{25}{9}  \\  \\  \implies \sf sec \theta  =  \pm \frac{5}{3}  \\  \ \bf  \{but \: sec\theta \ne  - ve \} \:  \: ( \because \theta \: is \: acute) \\  \\  \therefore  \bf sec\theta =  \frac{5}{3}

Hence,

 \purple{   \large \underline{ \boxed{\bf cos\theta =  \dfrac{3}{5}}}} \\  \:  \:  \:  \: \:  \:  \:  \{  \bf\because cos\theta =  \frac{1}{sec \theta }  \}

So,

 \sf sin\theta =  \sqrt{1 -  {cos}^{2} \theta }  \\  \\  \sf =  \sqrt{1 -  \frac{9}{25} }  \\  \\  =  \sf  \sqrt{ \frac{16}{25} }  \\  \\  \sf =   \pm\frac{4}{5}

As θ is Acute so sinθ will not negative

Hence,

 \large \purple{ \bf \underline{ \boxed{ \bf sin \theta =  \frac{4}{5}  }}}

Now,

 \sf4sin2\theta - 3cos2\theta + 2 \\  \\  =  \sf 4(2sin\theta cos\theta) - 3(2 {cos}^{2} \theta - 1) + 2 \\  \\  \sf = 8 \times  \frac{4}{5} \times  \frac{3}{5}  -3 \bigg\{2\bigg( \frac{3}{5} \bigg) {}^{2}  - 1 \bigg\} + 2 \\  \\  =  \sf \frac{96}{25}   +  \frac{21}{25} + 2  \\  \\ \Large \purple{\bf =  \frac{167}{25} }

 \Large \red{\mathfrak{  \text{W}hich \:   \: is  \:  \: the  \:  \: required} }\\ \huge \red{\mathfrak{ \text{ A}nswer.}}

___________________________

༒ Alernate Solution ➽

As

 \sf3sin\theta = 4cos\theta \\  \\  \implies \sf \dfrac{sin\theta }{cos \theta }  =   \frac{4}{3}  \\  \\  \implies \large \boxed{ \bf tan\theta =  \frac{4}{3} }

Squaring We get

 \bf {tan}^{2} \theta =  \frac{16}{9}

We Know

 \sf sin2 \theta =   \dfrac{2tan \theta}{1 +  {tan}^{2}  \theta}  \\  \\  \bf and \\  \\  \sf cos2 \theta =  \frac{1 -  {tan}^{2}  \theta}{1 + tan {}^{2} \theta }

Now,

 \sf4sin2\theta - 3cos2\theta + 2 \\  \\  =  \sf4 \bigg(  \frac{2tan\theta}{1 + tan {}^{2} \theta }  \bigg) - 3 \bigg(  \frac{1 -  {tan}^{2}  \theta}{1 + tan {}^{2} \theta }  \bigg) + 2 \\  \\  \sf = 4 \bigg( \frac{2( \frac{4}{3}) }{1 +  \frac{16}{9} }  \bigg) - 3 \bigg( \frac{1 -  \frac{16}{9} }{1 +  \frac{16}{9} }  \bigg) + 2 \\  \\  \sf = 4 \bigg( \dfrac{ 8/3 }{ 25 /9 }  \bigg) - 3 \bigg(  \frac{ - 7 /9 }{ 25 /9 }  \bigg) + 2 \\  \\  \sf = 4 \bigg( \frac{24}{5}  \bigg)  + 3 \bigg( \frac{7}{25}  \bigg)  + 2 \\  \\  \sf =  \frac{96}{25}  +  \frac{21}{25}  + 2  \\  \\  \Large \bf \purple{ \bf =  \frac{167}{25} }

 \Large \red{\mathfrak{  \text{W}hich \:   \: is  \:  \: the  \:  \: required} }\\ \huge \red{\mathfrak{ \text{ A}nswer.}}

___________________________

Similar questions