change in velocity of a body is 5 times that of the initial velocity find the final kinetic energy of the body
Answers
Explanation:
Initial velocity =v; Final velocity =3v
Initial kinetic energy k1=21×m×v2
Final kinetic energy k2=21×m×(3v)2=91×21mv2
Change in kinetic energy =21mv2−91×21mv2
=21mv2(1−91)
=98×21×mv2
=98× Initial kinetic energy.
Explanation
Explanation:
Explanation:Initial velocity =v; Final velocity =3v
Explanation:Initial velocity =v; Final velocity =3vInitial kinetic energy k1=21×m×v2
Explanation:Initial velocity =v; Final velocity =3vInitial kinetic energy k1=21×m×v2Final kinetic energy k2=21×m×(3v)2=91×21mv2
Explanation:Initial velocity =v; Final velocity =3vInitial kinetic energy k1=21×m×v2Final kinetic energy k2=21×m×(3v)2=91×21mv2Change in kinetic energy =21mv2−91×21mv2
Explanation:Initial velocity =v; Final velocity =3vInitial kinetic energy k1=21×m×v2Final kinetic energy k2=21×m×(3v)2=91×21mv2Change in kinetic energy =21mv2−91×21mv2=21mv2(1−91)
Explanation:Initial velocity =v; Final velocity =3vInitial kinetic energy k1=21×m×v2Final kinetic energy k2=21×m×(3v)2=91×21mv2Change in kinetic energy =21mv2−91×21mv2=21mv2(1−91)=98×21×mv2
Explanation:Initial velocity =v; Final velocity =3vInitial kinetic energy k1=21×m×v2Final kinetic energy k2=21×m×(3v)2=91×21mv2Change in kinetic energy =21mv2−91×21mv2=21mv2(1−91)=98×21×mv2=98× Initial kinetic energy.