Change sec4@-sec2@ in the term of tan@
Anonymous:
..
Answers
Answered by
6
ANSWER:
Verify sec4x−sec2x=tan4x+tan2x
Explanation:
Left side →sec4x−sec2x
=1cos4x−1cos2x
=1−cos2xcos4x
=sin2xcos4x
=tan2x(1cos2x)
Apply the trig identity: 1cos2x=(1+tan2x), we get:
Left side →tan2x(1+tan2x)=tan4x+tan2x
Verify sec4x−sec2x=tan4x+tan2x
Explanation:
Left side →sec4x−sec2x
=1cos4x−1cos2x
=1−cos2xcos4x
=sin2xcos4x
=tan2x(1cos2x)
Apply the trig identity: 1cos2x=(1+tan2x), we get:
Left side →tan2x(1+tan2x)=tan4x+tan2x
Answered by
2
hope it is helpful for you
Attachments:
Similar questions