Math, asked by dibyendu31101973, 4 months ago

Chapter
1 Find the values of:
(1) sina 60° - cos2 45° + 3 tan2 30°​

Answers

Answered by BrainlyPopularman
15

TO FIND :

• The value of sin(60°) - cos²(45°) + 3 tan²(30°) = ?

SOLUTION :

• We know that –

▪︎ sin(60°) = √3/2

▪︎ cos(45°) = 1/√2

▪︎ tan(30°) = 1/√3

• Let –

⇒ P = sin(60°) - cos²(45°) + 3 tan²(30°)

• Now put the values –

⇒ P = √3/2 - (1/√2)² + 3 (1/√3)²

⇒ P = √3/2 - ½ + 3(⅓)

⇒ P = √3/2 - ½ +1

⇒ P = √3/2 + ½

⇒ P = (√3 + 1)/2

• Hence –

sin(60°) - cos²(45°) + 3 tan²(30°) = (√3 + 1)/2

More Information :

 \Large{ \begin{tabular}{|c|c|c|c|c|c|} \cline{1-6} \theta & \sf 0^{\circ} & \sf 30^{\circ} & \sf 45^{\circ} & \sf 60^{\circ} & \sf 90^{\circ} \\ \cline{1-6} $ \sin $ & 0 & $\dfrac{1}{2 }$ & $\dfrac{1}{ \sqrt{2} }$ & $\dfrac{ \sqrt{3}}{2}$ & 1 \\ \cline{1-6} $ \cos $ & 1 & $ \dfrac{ \sqrt{ 3 }}{2} } $ & $ \dfrac{1}{ \sqrt{2} } $ & $ \dfrac{ 1 }{ 2 } $ & 0 \\ \cline{1-6} $ \tan $ & 0 & $ \dfrac{1}{ \sqrt{3} } $ & 1 & $ \sqrt{3} $ & $ \infty $ \\ \cline{1-6} \cot & $ \infty $ &$ \sqrt{3} $ & 1 & $ \dfrac{1}{ \sqrt{3} } $ &0 \\ \cline{1 - 6} \sec & 1 & $ \dfrac{2}{ \sqrt{3}} $ & $ \sqrt{2} $ & 2 & $ \infty $ \\ \cline{1-6} \csc & $ \infty $ & 2 & $ \sqrt{2 } $ & $ \dfrac{ 2 }{ \sqrt{ 3 } } $ & 1 \\ \cline{1 - 6}\end{tabular}}

Answered by BrainlyMan05
13

Answer:

\rm\dfrac{5}{4}

Step-by-step explanation:

Question:

Find the value of: \bf{sin^260° - cos^245° + 3tan^2 30°}

We know that,

  • sin60°=\rm\dfrac{√3}{2}

  • cos45° = \rm\dfrac{1}{√2}

  • tan30° = \rm\dfrac{1}{√3}

So, apply the values:

\rm\dfrac{(√3)^2}{2^2}- \rm\dfrac{1}{(√2)^2}+3 \times \rm\dfrac{1}{(√3)^2}

\rm\dfrac{3}{4}-\rm\dfrac{1}{2}+3\times \rm\dfrac{1}{3}

\rm\dfrac{3}{4}-\rm\dfrac{1}{2} +1

\rm\dfrac{3}{4}+\rm\dfrac{1}{2}

\implies \rm\dfrac{5}{4}

Final answer:

\rm\dfrac{5}{4}

Know more:

\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\sf Trigonometry\: Table \\ \begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\boxed{\boxed{\begin{array}{ |c |c|c|c|c|c|} \bf\angle A & \bf{0}^{ \circ} & \bf{30}^{ \circ} & \bf{45}^{ \circ} & \bf{60}^{ \circ} & \bf{90}^{ \circ} \\ \\ \rm sin A & 0 & \dfrac{1}{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{ \sqrt{3}}{2} &1 \\ \\ \rm cos \: A & 1 & \dfrac{ \sqrt{3} }{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{1}{2} &0 \\ \\ \rm tan A & 0 & \dfrac{1}{ \sqrt{3} }&1 & \sqrt{3} & \rm \infty \\ \\ \rm cosec A & \rm \infty & 2& \sqrt{2} & \dfrac{2}{ \sqrt{3} } &1 \\ \\ \rm sec A & 1 & \dfrac{2}{ \sqrt{3} }& \sqrt{2} & 2 & \rm \infty \\ \\ \rm cot A & \rm \infty & \sqrt{3} & 1 & \dfrac{1}{ \sqrt{3} } & 0\end{array}}}\end{gathered}\end{gathered}\end{gathered} \end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered}

Similar questions