Physics, asked by Elliyana333, 10 months ago

Chapter 35 1. A light ray of wavelength of 590 nm traveling through water, with index of refraction of 1.33, is incident on a glass slab, with index of refraction of 1.50, at an angle of 34°. Find (a) angle of refraction, (b) speed of this light ray in water and in glass slab, and (c) wavelength of light ray in glass slab. 2. A pair of narrow, parallel slits sep by 0.25 mm is illuminated by 546 nm green light. The interference pattern is observed on a screen situated at 1.3 m away from the slits. Calculate the distance from the central maximum to the (a) first maxima on both sides of central maximum (b) second minima on both sides of central maximum.

Answers

Answered by anubhabkumar2020
0

L=2m,

L=2m,d=3mm,A=

L=2m,d=3mm,A= 4

L=2m,d=3mm,A= 49π

L=2m,d=3mm,A= 49π

L=2m,d=3mm,A= 49π ×10

L=2m,d=3mm,A= 49π ×10 −6

L=2m,d=3mm,A= 49π ×10 −6 m

L=2m,d=3mm,A= 49π ×10 −6 m 2

L=2m,d=3mm,A= 49π ×10 −6 m 2

L=2m,d=3mm,A= 49π ×10 −6 m 2 ΔL=

L=2m,d=3mm,A= 49π ×10 −6 m 2 ΔL= 4

L=2m,d=3mm,A= 49π ×10 −6 m 2 ΔL= 49π

L=2m,d=3mm,A= 49π ×10 −6 m 2 ΔL= 49π

L=2m,d=3mm,A= 49π ×10 −6 m 2 ΔL= 49π×10

L=2m,d=3mm,A= 49π ×10 −6 m 2 ΔL= 49π×10 −6

L=2m,d=3mm,A= 49π ×10 −6 m 2 ΔL= 49π×10 −6 ×10

L=2m,d=3mm,A= 49π ×10 −6 m 2 ΔL= 49π×10 −6 ×10 11

L=2m,d=3mm,A= 49π ×10 −6 m 2 ΔL= 49π×10 −6 ×10 11

L=2m,d=3mm,A= 49π ×10 −6 m 2 ΔL= 49π×10 −6 ×10 11 30×2

L=2m,d=3mm,A= 49π ×10 −6 m 2 ΔL= 49π×10 −6 ×10 11 30×2

L=2m,d=3mm,A= 49π ×10 −6 m 2 ΔL= 49π×10 −6 ×10 11 30×2 =8.48×10

L=2m,d=3mm,A= 49π ×10 −6 m 2 ΔL= 49π×10 −6 ×10 11 30×2 =8.48×10 −5

L=2m,d=3mm,A= 49π ×10 −6 m 2 ΔL= 49π×10 −6 ×10 11 30×2 =8.48×10 −5 m=0.085mm

L=2m,d=3mm,A= 49π ×10 −6 m 2 ΔL= 49π×10 −6 ×10 11 30×2 =8.48×10 −5 m=0.085mm

L=2m,d=3mm,A= 49π ×10 −6 m 2 ΔL= 49π×10 −6 ×10 11 30×2 =8.48×10 −5 m=0.085mm .

Similar questions