Math, asked by kastu58, 3 months ago

chapter Algebraic Identities

Please solve the above question
The answer is - 9/4 x² - 33/5 pqx + 8/5 p²q²

I want the solving ​

Attachments:

Answers

Answered by itzPapaKaHelicopter
3

\huge \fbox \green{Answer:}

 \textbf{Given:}  \:  \left(  \frac{3}{4} x - 2pq\right) \] \left(3x -  \frac{4}{5}pq  \right) \]

 \textbf{To Do – Find Product}

\sf \colorbox{pink} {Now Solve}

⇒ \left(  \frac{3}{4} x - 2pq\right) \] \left( 3x -  \frac{4}{5} pq\right) \]

 =  \frac{9}{4}  {x}^{2}  -  \frac{12}{20} x \: pq - 6x \: pq +  \frac{8}{5}  {p}^{2}  \:  {q}^{2}

 =  \frac{9}{4}  {x}^{2}  -  \frac{132}{20} x \: pq +  \frac{8}{5}  {p}^{2}  {q}^{2}

 \\  \\  \\  \\  \\ \sf \colorbox{gold} {\red(ANSWER ᵇʸ ⁿᵃʷᵃᵇ⁰⁰⁰⁸}

Answered by akkhansa
0

Step-by-step explanation:

(

4

3

x−2pq)(3x−

5

4

pq)

= \frac{9}{4} {x}^{2} - \frac{12}{20} x \: pq - 6x \: pq + \frac{8}{5} {p}^{2} \: {q}^{2}=

4

9

x

2

20

12

xpq−6xpq+

5

8

p

2

q

2

= \frac{9}{4} {x}^{2} - \frac{132}{20} x \: pq + \frac{8}{5} {p}^{2} {q}^{2}=

4

9

x

2

20

132

xpq+

5

8

p

2

q

2

Similar questions