Math, asked by LEGENDARYSUMIT01, 1 month ago

Chapter :- Complex numbers.

Q) Find the argument and Principle argument of (1-i√3)^9.

Need The Answer Urgently, Huge request Please No spamming. ​

Answers

Answered by shadowsabers03
8

We're asked to find the argument and principal argument of the complex number,

\small\text{$\displaystyle\longrightarrow z=\left(1-i\sqrt3\right)^9$}

In the complex number \small\text{$\displaystyle1-i\sqrt3$} the real part is 1 and imaginary part is -√3.

Here the complex number \small\text{$\displaystyle z$} is first written in Euler form.

First both sides are divided by 9th power of \small\text{$\displaystyle\sqrt{1^2+(-\sqrt3)^2}=2,$} i.e., by \small\text{$\displaystyle 2^9.$}

\small\text{$\displaystyle\longrightarrow\dfrac{z}{2^9}=\dfrac{\left(1-i\sqrt3\right)^9}{2^9}$}

\small\text{$\displaystyle\longrightarrow\dfrac{z}{2^9}=\left(\dfrac{1}{2}-i\cdot\dfrac{\sqrt3}{2}\right)^9$}

Since \small\text{$\displaystyle\cos\left(-\dfrac{\pi}{3}\right)=\dfrac{1}{2}$} and \small\text{$\displaystyle\sin\left(-\dfrac{\pi}{3}\right)=-\dfrac{\sqrt3}{2},$}

\small\text{$\displaystyle\longrightarrow\dfrac{z}{2^9}=\left(\cos\left(-\dfrac{\pi}{3}\right)+i\sin\left(-\dfrac{\pi}{3}\right)\right)^9$}

Here the complex number \small\text{$\displaystyle1-i\sqrt3$} is in polar form. Then its Euler form will be,

\small\text{$\displaystyle\longrightarrow\dfrac{z}{2^9}=\left(e^{-i\frac{\pi}{3}}\right)^9$}

\small\text{$\displaystyle\longrightarrow z= 2^9e^{-i\frac{9\pi}{3}}$}

\small\text{$\displaystyle\longrightarrow z= 2^9e^{-i\,3\pi}$}

Now \small\text{$\displaystyle z$} is in Euler form. It's argument is shown \small\text{$\displaystyle-3\pi$} so the arguments are in the form \small\text{$\displaystyle 2k\pi-3\pi\quad\!\forall k\in\mathbb{Z}.$}

And the principal argument is given by the value of \small\text{$\displaystyle k$} such that,

\small\text{$\displaystyle\longrightarrow2k\pi-3\pi\in(-\pi,\ \pi]$}

\small\text{$\displaystyle\longrightarrow2k\pi\in(2\pi,\ 4\pi]$}

\small\text{$\displaystyle\longrightarrow k\in(1,\ 2]$}

Since \small\text{$\displaystyle k\in\mathbb{Z},$}

\small\text{$\displaystyle\longrightarrow k=2$}

Then principal argument is,

\small\text{$\displaystyle\longrightarrow2k\pi-3\pi=2(2)\pi-3\pi=\pi$}

Hence the principal argument is \small\text{$\displaystyle\pi$} and so the general argument is \small\text{$\displaystyle 2n\pi+\pi\quad\!\forall n\in\mathbb{Z}.$}

Similar questions