Math, asked by yesh009, 8 months ago

CHAPTER: distance formula


Attachments:

Answers

Answered by nidhirbl08
0

Answer:

distance= speed x time

Answered by amankumaraman11
0

We know,

 \boxed{  \orange{ \texttt{DISTANCE FORMULA}    :  \blue{  :\rm \: \sqrt{ {(x_{\tiny{2}} - x_{\tiny{1}})}^{2}  +  {(y_{\tiny{2}}  - y_{\tiny{1}})}^{2} }}  } }\\

Using the above formula, we have to find the distance between :

  1. A(-3, 6) and B(2, -6)
  2. P(-a, -b) and Q(a, b)
  3. X(3/5, 2) and Y(-1/5, 7/5)
  4. S(√3+1, 1) and P(0, √3)

Now,

 \large \bf1.  \:  \:  \text{Measure of AB} \implies\\  \\  \to \sqrt{ { \{6 - ( - 3) \}}^{2} + { \{ - 6 - 2 \}}^{2}   }  \\ \to  \sqrt{ {(6 + 3)}^{2}  +  {( - 8)}^{2} }  \\  \to \sqrt{ {(9)}^{2} + 64 }  \:  \:  =  \sqrt{81 + 64}  \\  \to \rm \sqrt{145}  \:  \:  \: or \:  \:  \:  \red{12.04} \: units

  \overline{ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: } \\

 \large \bf2. \:  \:  \text{Measure of PQ} \implies \\  \\  \to \tt \sqrt{ { \{ - a - ( - b) \}}^{2} +   {(b - a)}^{2} }  \\ \to \tt  \sqrt{ { \{  - a + b\}}^{2} +  {(b - a)}^{2}  }  \\  \to \tt \sqrt{ {(b - a)}^{2} +  \{ {b}^{2} +  {a}^{2}   - 2ba \} }  \\  \to \tt \sqrt{ {b}^{2} +  {a}^{2}   - 2ba +  {b}^{2} +  {a}^{2}  - 2ba }  \\  \to \tt \sqrt{ {2b}^{2}  +  {2a}^{2} - 4ba }  \\  \to \tt \sqrt{2( {b}^{2} +  {a}^{2} - 2ba)  }    \\ \to \tt\big( \sqrt{2} \big ) \bigg( \sqrt{ {(b - a)}^{2} }  \bigg) \\  \to \tt  \red{\sqrt{2} \big(b - a\big)} \: \: units

  \overline{ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: } \\

 \large \bf3.   \:  \:  \: \text{Measure of XY} \implies \\  \\  \to  \rm \sqrt{ {\bigg(2 -  \frac{3}{5} \bigg )}^{2}  +  {\bigg \{ \frac{7}{5} -  \bigg(  \frac{ - 1}{5} \bigg) \bigg \}}^{2} }  \\  \\  \to \sqrt{ {\bigg( \frac{10 - 3}{5} \bigg)}^{2} +  { \bigg\{  \frac{7 - ( - 1)}{5} \bigg\}}^{2}  }  \\  \\  \to \sqrt{ {\bigg( \frac{7}{5} \bigg)}^{2} +  {\bigg( \frac{8}{5} \bigg)}^{2}  }  \\  \\   \to\sqrt{ {\bigg( \frac{49}{25} \bigg)}^{} + \bigg( \frac{64}{25} \bigg) }  \\  \\  \to \sqrt{ \frac{49 + 64}{25} }  \:  \:  =  \sqrt{ \frac{113}{25} }  \\  \\  \rm \longrightarrow  \red{ \frac{ \sqrt{113} }{5} } \: \:  units

  \overline{ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: } \\

  \large  \bf4 .   \:  \: \text{Measure of SP} \implies \\  \\ \to  \sqrt{ { \{1 - ( \sqrt{3} + 1 ) \}}^{2} +   {( \sqrt{3} - 0 )}^{2} } \\   \\  \to \sqrt{ { \{1 -  \sqrt{3} - 1  \}}^{2} +  {( \sqrt{3} )}^{2}  }   \\  \\  \to \sqrt{ {( -  \sqrt{3} )}^{2}  + 3}  \\  \\  \to \sqrt{3 + 3} \:  \:  \:   =   \rm \red{\sqrt{6}}  \:  \: units

 \\  \\  \\

✓✓ Extra Formula

  \texttt{Section Formula} :  \sf \bigg \{ \frac{m_1 x_2 +m_2 x_1  }{m_1 +m_2 } , \frac{m_1 y_2 +m_2 y_1 }{m_1 +m_2}  \bigg \} \\  \\  \\

Similar questions