Math, asked by Anonymous, 8 months ago

Chapter:- Expansions.

Solve this question with proper explanation.

I need verified answer✅​

Attachments:

Answers

Answered by Anonymous
124

Answer:

(i) 12

________

(ii)-12

________

(iii)5

Step-by-step explanation:

(i) Formula of (a+b)² = a²+b²+2ab

Expanding the R.H.S:

(2x+3)²=4x²+9+12x

= 4x²+12x+9

L.H.S = 4x²+ax+9

Comparing the coefficients :

a = 12

The value of a is equal to 12

________________________________

(ii) Formula of (a-b)² = a²+b²-2ab

Expanding the R.H.S:

(2x-3)²=4x²+9-12x

=4x²-12x+9

L.H.S = 4x²+ax+9

Comparing the coefficients :

a = - 12

The value of a is equal to - 12

________________________________

(iii) Formula of (a+b)² = a²+b²+2ab

Expanding the R.H.S:

(3x+5)²=9x²+25+30x

= 9x²+30x+25

L.H.S = 9x²+(7a-5)x

Comparing the coefficients :

(7a-5)x=30x

7a-5=30

7a=35

a=35/7

a=5

The value of a is equal to 5

________________________________

The above concept is just based on expansion and comparison of the coefficients

Answered by ExᴏᴛɪᴄExᴘʟᴏʀᴇƦ
85

\huge\sf\pink{Answer}

☞ a = 12

☞ a = -12

☞ a = 5

\rule{110}1

\huge\sf\blue{Given}

✭ 4x²+ax+9 = (2x+3)²

✭ 4x²+ax+9 = (2x-3)²

✭ 9x²+(7a-5)x+25 = (3x+5)²

\rule{110}1

\huge\sf\gray{To \:Find}

◈ The Value of a?

\rule{110}1

\huge\sf\purple{Steps}

So in all these sums we first have to expand the LHS and then equate it with the RHS

In Question (1)

\sf (2x+3)^2 = (2x)^2+2(2x)(3)+3^2

\sf 4x^2+12x+9

Equating with LHS

\sf \cancel{4x^2}+ax+\cancel{9} = \cancel{4x^2}+12x+\cancel{9}

\sf a\cancel{x}=12\cancel{x}

\sf\red{a=12}

In Question (2)

\sf (2x-3)^2 = (2x)^2 - 2(2x)(3)+3^2

\sf 4x^2-12x+9

Equating with LHS

\sf\cancel{4x^2}+ax+\cancel{9}=\cancel{4x^2}-12x+\cancel{9}

\sf a\cancel{x} = -12\cancel{x}

\sf\green{a=-12}

In Question (3)

\sf (3x+5)^2 = (3x)^2+2(3x)(5)+5^2

\sf 9x^2+30x+25

Equating with LHS

\sf \cancel{9x^2} +(7a-5)x+\cancel{25} = \cancel{9x^2}+30x+\cancel{25}

\sf (7a-5)\cancel{x} = 30\cancel{x}

\sf 7a-5=30

\sf 7a=30+5

\sf 7a = 35

\sf a=\dfrac{35}{7}

\sf\orange{a = 5}

\rule{170}3

Similar questions