Math, asked by Anonymous, 4 months ago

chapter - integration ​

Attachments:

Answers

Answered by Anonymous
28

Given Integrand,

f(x) =  \displaystyle \int  \dfrac{ {2x}^{3}  - 1}{x +  {x}^{4} } dx

Dividing with x^2 in both numerator and denominator,

 \longrightarrow \: f(x) =  \displaystyle \int  \dfrac{ {2x}^{}  -  \dfrac{1}{ {x}^{2} } }{ \dfrac{1}{x}  +  {x}^{2} } dx

Let t = x^2 + 1/x.

Differentiating w.r.t x on both sides, we get :

dx =  \dfrac{dt}{2x -  \dfrac{1}{ {x}^{2} } }

Now,

 \longrightarrow \: f(x) =  \displaystyle \int  \dfrac{dt}{t}  \\  \\ \longrightarrow \: f(x) =  ln(t)  + c \\  \\ \longrightarrow \: f(x) =  ln  \bigg( {x}^{2} +  \dfrac{1}{x}   \bigg)  + c

ALITER,

We know that,

\displaystyle \int \dfrac{f'(x)}{f(x)} = ln(f(x)) + C

Thus,

\longrightarrow  f(x) =  ln  \bigg( {x}^{2} +  \dfrac{1}{x}   \bigg)  + c

Answered by BrainlyKingdom
8

\int \dfrac{2x^3-1}{x+x^4}dx

\displaystyle=\int \frac{2u-1}{3u^{\frac{2}{3}}\left(\sqrt[3]{u}+u^{\frac{4}{3}}\right)}du

\displaystyle =\frac{1}{3}\cdot \int \frac{2u-1}{u^{\frac{2}{3}}\left(\sqrt[3]{u}+u^{\frac{4}{3}}\right)}du

\displaystyle=\frac{1}{3}\cdot \int \frac{2u-1}{u+u^2}du

\displaystyle=\frac{1}{3}\left(\int \frac{2u}{u+u^2}du-\int \frac{1}{u+u^2}du\right)

=\dfrac{1}{3}\left(2\ln \left|1+u\right|-\left(\ln \left|u\right|-\ln \left|u+1\right|\right)\right)

=\dfrac{1}{3}\left(2\ln \left|1+x^3\right|-\left(\ln \left|x^3\right|-\ln \left|x^3+1\right|\right)\right)

=\dfrac{1}{3}\left(3\ln \left|x^3+1\right|-\ln \left|x^3\right|\right)

=\dfrac{1}{3}\left(3\ln \left|x^3+1\right|-\ln \left|x^3\right|\right)+C

Similar questions