Chapter: Introduction to trigonometry
Answers
Note : Theta is written as A.
Answer:
x^2 + y^2 = a^2 + b^2
Step-by-step explanation:
Given value of x in terms of trigonometric terms is a cosA - b sinA and y is a sinA + b cosA
Square on both sides of x :
= > x^2 = ( a cosA - b sinA )^2
= > x^2 = ( a cosA ) + ( b sinA ) - 2( a cosA x b sinA ) { using ( a - b )^2 = a^2 + b^2 - 2ab }
= > x^2 = a^2 cos^2 A + b^2 sin^2 A - 2ab cosA sinA
Square on both sides of y :
= > y^2 = ( a sinA + b cosA )^2
= > y^2 = ( a sinA )^2 + ( b cosA )^2 + 2( a sinA x b cosA ) { ( a + b )^2 = a^2 + b^2 + 2ab }
= > y^2 = a^2 sin^2 A + b^2 cos^2 A + 2ab sinA cosA
Then, adding the square of x and square of y :
= > x^2 + y^2 = [ a^2 cos^2 A + b^2 sin^2 A - 2ab cosA sinA ] + [ a^2 sin^2 A + b^2 cos^2 A + 2ab sinA cosA ]
= > x^2 + y^2 = a^2 cos^2 A + b^2 sin^2 A - 2ab sinAcosA + a^2 sin^2 A + b^2 cos^2 A + 2ab sinAcosA
= > x^2 + y^2 a^2( sin^2 A + cos^2 A ) + b^2( sin^2 A + cos^2 A )
From the properties of trigonometric ratios : sin²∅ + cos²∅ = 1
= > x^2 + y^2 = a^2( 1 ) + b^2( 1 )
= > x^2 + y^2 = a^2 + b^2
Hence proved.
Hi there !!
Identity used :-
(a-b) ²= a²+b²-2ab
(a+b) ² =a²+b²+2ab
sin²0 + cos²0 = 1
{0= Thetha }
Look at the attachment ↑↑
Thank you :)