Chapter - Laws of Indices
If , then show that .
Answers
♦ Given that
>>
♦ Then to show
♦ Let us consider the Numbers
• We can write
>>
>>
♦ Now as
•
>> By comparing bases we can say that .
♦ Then by substituting the aquired value of c in
♦As b =
♦ As RHS = LHS , Hence Shown .
Answer:
1 / a + 1 / c = 2 / b
Step-by-step explanation:
Given,
( 222.2 )^a = ( 44.44 )^b = ( 8.888 )^c
Let,
( 222.2 )^a = ( 44.44 )^b = ( 8.888 )^2 = k
Thus,
⇒ ( 222.2 )^a = k
⇒ 222.2 = k^( 1 / a ) …( i )
⇒ ( 44.44 )^b = k
⇒ 44.44 = k^( 1 / b ) …( ii )
⇒ ( 8.888 )^c = k
⇒ 8.888 = k^( 1 / c ) …( iii )
Multiply ( i ) and ( iii ) : -
= > k^( 1 / a ) x k^( 1 / c ) = 222.2 x 8.888
= > k^( 1 / a + 1 / c ) = 2 x 111.1 x 8 x 1.111
= > k^( 1 / a + 1 / c ) = 2 x 2^3 x 100 x ( 1.111 )^2
= > k^( 1 / a + 1 / c ) = 2^4 + 10^2 x ( 1.111 )^2
= > k^( 1 / a + 1 / c ) = { 2^2 x 10 x 1.111 }^2
= > k^( 1 / a + 1 / c ) = ( 44.44 )^2
= > k^( 1 / a + 1 / c ) = { k^( 1 / b ) }^2 { from ( ii ) }
= > k^( 1 / a + 1 / c ) = k^( 2 / b )
From the properties of indices, we know, if bases are same, powers are equal.
Then,
= > 1 / a + 1 / c = 2 / b
Hence proved.