Math, asked by neom333, 3 months ago

chapter liner equation in two variable .
please anyone solve this problem by elimination method. ​

Attachments:

Answers

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

Given pair of linear equations are

\rm :\longmapsto\:125x + 110y = 152000 -  -  - (1)

and

\rm :\longmapsto\:110x + 125y = 153500 -  -  - (2)

On adding equation (1) and (2), we get

\rm :\longmapsto\:235x + 235y = 305500

\rm :\longmapsto\:235(x +y) = 305500

\rm :\longmapsto\:x +y= 1300 -  -  - (3)

On Subtracting equation (2) from (1), we get

\rm :\longmapsto\:15x - 15y =  - 1500

\rm :\longmapsto\:15(x - y) =  - 1500

\rm :\longmapsto\:x - y =  - 100 -  -  - (4)

Now, Adding equation (3) and (4), we get

\rm :\longmapsto\:2x = 1200

\bf\implies \:x = 600 -  -  - (5)

On substituting the value of x in equation (4), we get

\rm :\longmapsto\:600 - y =  - 100

\rm :\longmapsto\:- y =  - 100 - 600

\rm :\longmapsto\:- y =  - 700

\bf\implies \:y = 700

Verification :-

Consider equation (1),

\rm :\longmapsto\:125x + 110y = 152000

On substituting the value of x and y, we get

\rm :\longmapsto\:125(600) + 110(700) = 152000

\rm :\longmapsto\:75000 + 77000 = 152000

\rm :\longmapsto\:152000  = 152000

Hence, Verified

Additional Information :-

Short - Cut trick to evaluate the linear equation of the form

\rm :\longmapsto\:ax + by = c

and

\rm :\longmapsto\:bx + ay = d

Then, such equations reduces to simplest form as

 \boxed{ \sf{x + y =  \frac{c + d}{a + b}}}

and

 \boxed{ \sf{x  -  y =  \frac{c  -  d}{a  -  b}}}

Similar questions