Physics, asked by FTREpreparation, 1 year ago

CHAPTER : Motion in a Plane .

If for two vectors vector A and vector B , sum of A + B is perpendicular to difference A - B , the ratio of magnitudes is :
(1) 1:1
(2) 2:1
(3) 3:1
(4) 4:1

Answers

Answered by Anonymous
11

\vec{A}+\vec{B} and \vec{A}-\vec{B} are perpendicular to each other .

By scalar product of vector multiplication we have :

\vec{X}.\vec{Y}=|X||Y|cos\theta where \theta is the angle between the two vectors X and Y .

Given :

(\vec{A}+\vec{B}).(\vec{A}-\vec{B})=|A+B||A-B|cos\theta\\\\\implies (\vec{A}+\vec{B}).(\vec{A}-\vec{B})=|A+B||A-B|cos90^\circ\\\\\implies (\vec{A}+\vec{B}).(\vec{A}-\vec{B})=0\\\\\therefore\mathsf{cos90^\circ=0}\\\\\implies \vec{A}.\vec{A}+\vec{A}.\vec{B}-\vec{A}.\vec{B}-\vec{B}\vec{B}=0\\\\\implies A^2cos0^\circ-B^2cos0^\circ=0\\\\\implies A^2-B^2=0\\\\\implies A^2=B^2

A=\pm B

Neglect the negative value because magnitude cannot be negative .

A:B=1:1

Option (1) is correct .


Anonymous: amazing one boss ❤
Anonymous: thanks ❤
Ananyachakrabarty: Amazing yaar
Anonymous: Thanks
Similar questions