Math, asked by Anonymous, 1 year ago

chapter name : trigonometric equations

Solve the given equation...

Attachments:

Answers

Answered by iftekhar69
3

answer of this question is 45 degree

Attachments:
Answered by Brainlyconquerer
5

Answer:

\implies{\mathsf{\theta = 30^{\circ} \: and \: 45^{\circ} }}

Step-by-step explanation:

Given , {\cot}^{2}(\theta)  - (1 +  \sqrt{3} ) \cot(\theta)  +  \sqrt{3}=0

\implies{\mathsf{0 <\theta< \frac{\pi}{2}}}

{\cot}^{2}(\theta) - (1 +  \sqrt{3} ) \cot(\theta)  +  \sqrt{3}  = 0 \\  \\  { \cot}^{2}(\theta)  -  \cot(\theta)  -  \sqrt{3}( \cot(\theta)  ) +  \sqrt{3}  = 0 \\  \\  \cot(\theta) ( \cot(\theta)  - 1)  -  \sqrt{3} (  \cot(\theta)   -  1) = 0 \\  \\ ( \cot(\theta)  -  \sqrt{3})( \cot(\theta)   - 1) = 0

Now equate the factors to zero to get the roots of the equation

 \cot(\theta)   - 1 = 0 \\  \\  \cot(\theta)  = 1 \\  \\  \cot(\theta)  =  \cot(\theta)  \\  \\

\mathsf{\theta = 45^{\circ}}

Now equate the next factor,

\implies{\mathsf{ cot(\theta)- \sqrt{3} =0  }}

\implies{\mathsf{ cot(\theta) = \sqrt{3} }}

\implies{\mathsf{ \theta = 30^{\circ} }}

as both 30° & 45° < 90° so are the solutions of the equation.

Similar questions