Math, asked by Arceus02, 8 months ago

[Chapter: Number Theory]
1) Let \sf{a = \dfrac{1^2}{1} + \dfrac{2^2}{3} + \dfrac{3^2}{5} + \dots + \dfrac{{(1001)}^{2}}{2001}}, and \sf{b = \dfrac{1^2}{3} + \dfrac{2^2}{5} + \dfrac{3^2}{7} + \dots + \dfrac{{(1001)}^{2}}{2003}}. The closest integer of \sf{(a - b)} is ?
\sf{\\}
2) Let s, t be positive integers such that \sf{{7}^{s}} divides 400! and \sf{{3}^{t}} divides \sf{[(3!)!]!}, then s + t is ?
\sf{\\}
[Ans. (1) => 501 and (B) => 422]
Explanation needed.​


amitnrw: 1001 - (1001)^2/2003 is the exact answer for 1st . approx 500.75 approx 501

Answers

Answered by shadowsabers03
9

1. Given,

\sf{\longrightarrow a=\dfrac{1^2}{1}+\dfrac{2^2}{3}+\dfrac{3^2}{5}+\,\dots\,+\dfrac{1001^2}{2001}}

Or,

\displaystyle\sf{\longrightarrow a=\sum_{r=1}^{1001}\dfrac{r^2}{2r-1}}

And,

\sf{\longrightarrow b=\dfrac{1^2}{3}+\dfrac{2^2}{5}+\dfrac{3^2}{7}+\,\dots\,+\dfrac{1001^2}{2003}}

Or,

\displaystyle\sf{\longrightarrow b=\sum_{r=1}^{1001}\dfrac{r^2}{2r+1}}

Then,

\displaystyle\sf{\longrightarrow a-b=\sum_{r=1}^{1001}\dfrac{r^2}{2r-1}-\sum_{r=1}^{1001}\dfrac{r^2}{2r+1}}

\displaystyle\sf{\longrightarrow a-b=\sum_{r=1}^{1001}r^2\left[\dfrac{1}{2r-1}-\dfrac{1}{2r+1}\right]}

\displaystyle\sf{\longrightarrow a-b=\sum_{r=1}^{1001}r^2\left[\dfrac{(2r+1)-(2r-1)}{(2r-1)(2r+1)}\right]}

\displaystyle\sf{\longrightarrow a-b=\sum_{r=1}^{1001}\dfrac{2r^2}{4r^2-1}\right]}

\displaystyle\sf{\longrightarrow a-b=2\sum_{r=1}^{1001}\dfrac{r^2}{4r^2-1}\right]}

As \sf{r} varies from \sf{1} to \sf{1001,} \sf{4r^2>>1,} then I can neglect that 1 in the denominator so that the value of \sf{a-b} obtained will be slightly less than actual value of \sf{a-b.}

So,

\displaystyle\sf{\longrightarrow a-b\simeq2\sum_{r=1}^{1001}\dfrac{r^2}{4r^2}\right]}

\displaystyle\sf{\longrightarrow a-b\simeq2\sum_{r=1}^{1001}\dfrac{1}{4}\right]}

\displaystyle\sf{\longrightarrow a-b\simeq\dfrac{2\times1001}{4}\right]}

\displaystyle\sf{\longrightarrow a-b\simeq500.5}

This value is slightly less than actual value.

So the nearest integer would be,

\displaystyle\sf{\longrightarrow\underline{\underline{a-b\simeq501}}}

2. \sf{s} is the greatest possible positive integer such that \sf{7^s\mid 400!.}

Let [.] be greatest integer function.

Then, since \sf{7^3<400<7^4,}

\sf{\longrightarrow s=\left[\dfrac{400}{7^1}\right]+\left[\dfrac{400}{7^2}\right]+\left[\dfrac{400}{7^3}\right]}

\sf{\longrightarrow s=\left[\dfrac{400}{7}\right]+\left[\dfrac{400}{49}\right]+\left[\dfrac{400}{343}\right]}

\sf{\longrightarrow s=57+8+1}

\sf{\longrightarrow s=66}

\sf{t} is the greatest possible positive integer such that \sf{3^t\mid [(3!)!]!=720!.}

Then, since \sf{3^5<720<3^6,}

\sf{\longrightarrow t=\left[\dfrac{720}{3^1}\right]+\left[\dfrac{720}{3^2}\right]+\left[\dfrac{720}{3^3}\right]+\left[\dfrac{720}{3^4}\right]+\left[\dfrac{720}{3^5}\right]}

\sf{\longrightarrow t=\left[\dfrac{720}{3}\right]+\left[\dfrac{720}{9}\right]+\left[\dfrac{720}{27}\right]+\left[\dfrac{720}{81}\right]+\left[\dfrac{720}{243}\right]}

\sf{\longrightarrow t=240+80+26+8+2}

\sf{\longrightarrow t=356}

Therefore,

\sf{\longrightarrow s+t=66+356}

\sf{\longrightarrow\underline{\underline{s+t=422}}}

Similar questions