Math, asked by jeeyan456, 1 month ago

Chapter - permutations and combinations

find R if 5Pr = 6Pr-1 ​

Answers

Answered by BrainlyTwinklingstar
8

Given :

 \sf {}^{5} P_r =  {}^{6} P_{r - 1}

To find :

The value of r

Solution :

The number of arrangement that can be made by "n" disimilar things taken "r" at a time where 'r' is in between 0 and n [ 0 < r ≤ n] and where repetition is not allowed is \sf ^nP_r

where,

 \dashrightarrow \sf^{n} P_r =  \dfrac{n!}{(n -  r)!}

According to the question,

 \dashrightarrow\sf^{5} P_r =  ^{6} P_{r - 1}

 \dashrightarrow \: \: \sf \dfrac{5!}{(5 - r)!}  =  \dfrac{6!}{ \{6 -  (r - 1) \}!}

 \dashrightarrow \: \:\sf \dfrac{5!}{(5 - r)!}  =  \dfrac{6 \times 5!}{(6 -  r + 1)!}

 \dashrightarrow \: \:\sf \dfrac{5!}{(5 - r)!}  =  \dfrac{6 \times 5!}{(7 - r)!}

 \dashrightarrow \: \:\sf \dfrac{1}{(5 - r)!}  =  \dfrac{6}{(7 - r)(6 - r)(5 - r)!}

 \dashrightarrow \: \:\sf \dfrac{1}{1}  =  \dfrac{6}{(7 - r)(6 - r)}

 \dashrightarrow \: \:\sf (7 - r)(6 - r) = 6

 \dashrightarrow \: \:\sf 42 - 7r - 6r +  {r}^{2}  = 6

 \dashrightarrow \: \:\sf 42 - 13r +  {r}^{2}  = 6

 \dashrightarrow \: \:\sf  {r}^{2}  - 13r + 36  = 0

By, splitting the middle terms,

 \dashrightarrow \: \:\sf  {r}^{2}  - (9 + 4)r + 36  = 0

 \dashrightarrow \: \:\sf  {r}^{2}  - 9r -  4r + 36  = 0

 \dashrightarrow \: \:\sf  r(r - 9) - 4(r - 9)  = 0

 \dashrightarrow \: \:\sf  (r - 4) (r - 9)  = 0

 \dashrightarrow \: \:\sf r   = 4 \: and \: 9

Therefore, r = 4 because 0≤ r ≤ 5


Anonymous: Exemplary answer! :D
Similar questions