Math, asked by prachi971714, 1 month ago

chapter :realtion and function
class 12th
answer fast
don't spam ​

Attachments:

Answers

Answered by senboni123456
2

Step-by-step explanation:

Let, \rm\:y=f^{-1}(x)\\

 \rm \implies \: f(y) = x

 \rm \implies \:  \frac{ {10}^{y}  -  {10}^{ - y} }{ {10}^{y} +  {10}^{ - y}  }  = x \\

 \rm \implies \:  \frac{ ({10}^{y}  -  {10}^{ - y}) +({10}^{y} +  {10}^{ - y}) }{ ({10}^{y}  -  {10}^{ - y})  - ({10}^{y} +  {10}^{ - y})  }  =  \frac{x + 1}{x - 1}  \\

 \rm \implies \:  \frac{ {10}^{y}  -  {10}^{ - y}+{10}^{y} +  {10}^{ - y} }{ {10}^{y}  -  {10}^{ - y} - {10}^{y}  -   {10}^{ - y}  }  =  \frac{x + 1}{x - 1}  \\

 \rm \implies \:  \frac{ 2 \times  {10}^{y}  }{ - 2 \times   {10}^{ - y}  }  =  \frac{x + 1}{x - 1}  \\

 \rm \implies \:   - \frac{  {10}^{y}  }{    {10}^{ - y}  }  =  \frac{x + 1}{x - 1}  \\

 \rm \implies \:   -  {10}^{2y}   =  \frac{x + 1}{x - 1}  \\

 \rm \implies \:    {10}^{2y}   =  \frac{ 1 + x}{ 1 - x}  \\

 \rm \implies \:   log( {10})^{2y}   = log \bigg( \frac{ 1 + x}{ 1 - x} \bigg)  \\

 \rm \implies \: 2y.  log( {10})   = log \bigg( \frac{ 1 + x}{ 1 - x} \bigg)  \\

 \rm \implies \: y   =  \frac{1}{2}. log \bigg( \frac{ 1 + x}{ 1 - x} \bigg)  \\

 \rm \implies \: y   =   log  \sqrt{ \frac{ 1 + x}{ 1 - x}} \\

 \rm \implies \:   f  ^{ - 1} (x)  =   log  \sqrt{ \frac{ 1 + x}{ 1 - x}} \\

Similar questions