Math, asked by yadavshalini874, 8 months ago

chapter:- trignometric identities.
class:-X

Attachments:

Answers

Answered by Brâiñlynêha
15

\underline{\sf\ \ \dag\ \ Given :- }

\bullet\sf \scriptsize{ \sf \big(secA+tanA\big)\big(secB+tanB\big)\big(secC+tanC\big)=\big(secA-tanA\big)\big(secB-tanB\big)\big(secC-tanC\big)= \pm 1}

\underline{\sf\ \ \dag\ \ To\ Prove :- }

  • We have to prove the given trigonometric equation each side equal to \sf \pm 1

\underline{\sf \ \ \star\ Solution:-}

  • Multiply both side with

\star\scriptsize{\sf\ (secA-tanA)(secB-tanB)(secC-tanC)}

Now,

\mapsto\scriptsize{\sf (secA+tanA)(secB+tanB)(secC+tanC) \big[(secA-tanA)(secB-tanB)(secC-tanC)\big]}\\ \sf =\ \scriptsize{\sf (secA-tanA)(secB-tanB)(secC-tanC) \big[(secA-tanA)(secB-tanB)(secC-tanC)\big]}\\ \\ \\ \mapsto\scriptsize{\sf (sec^2A-tan^2A)(sec^2B-tan^2B)(sec^2C-tan^2C)= \big[(secA-tanA)(secB-tanB)(secC-tanC)\big]^2}\\ \\ \\ \mapsto\scriptsize{\sf 1 = \big[(secA-tanA)(secB-tanB)(secC-tanC)\big]^2\ \ \ \ \big\lgroup 1+tan^2\theta=sec^2\theta\big\rgroup}\\ \\ \\ \mapsto\scriptsize{\sf \pm 1= \big[(secA-tanA)(secB-tanB)(secC-tanC)\big]}\ \ \ \sf\ Hence\ Proved!

\underline{\boxed{\purple{\scriptsize{\sf (secA-tanA)(secB-tanB)(secC-tanC)=\pm1}}}}

Now RHS -

  • Multiply both side with

\star\scriptsize{\sf\ (secA+tanA)(secB+tanB)(secC+tanC)}

\mapsto\scriptsize{\sf (secA+tanA)(secB+tanB)(secC+tanC) \big[(secA+tanA)(secB+tanB)(secC+tanC)\big]}\\ \sf =\ \scriptsize{\sf (secA-tanA)(secB-tanB)(secC-tanC) \big[(secA+tanA)(secB+tanB)(secC+tanC)\big]}\\ \\ \\ \mapsto\scriptsize{\sf \big[(secA+tanA)(secB+tanB)(secC+tanC)\big]^2=(sec^2A-tan^2A)(sec^2B-tan^2B)(sec^2C-tan^2C)}\\ \\ \\ \mapsto\scriptsize{\sf \big[(secA+tanA)(secB+tanB)(secC+tanC)\big]^2=1 \ \ \ \ \big\lgroup 1+tan^2\theta=sec^2\theta\big\rgroup}\\ \\ \\ \mapsto\scriptsize{\sf  \big[(secA+tanA)(secB+tanB)(secC+tanC)\big]=\pm 1}\ \ \ \sf\ Hence\ Proved!

\underline{\boxed{\red{\scriptsize{\sf (secA+tanA)(secB+tanB)(secC+tanC)=\pm1}}}}


Anonymous: Awesome ♥️♥️♥️ LaTeX
Brâiñlynêha: Thanks ^_^
Answered by Anonymous
10

Step-by-step explanation:

\qquad \qquad\tiny \dag \:  \underline{ \blue{\tt We  \: are \:  given \:  that :}} \\

\bigstar \:\: \sf (sec  \: A + tan \:  A) (sec \:  B + tan \:  B) (sec \:  C + tan \:  C) = (sec  \: A - tan \:  A) (sec  \: B - tan  \: B) (sec \:  C - tan  \: C)\:\:\bigstar \:  \:  \:  \:  \bigg \lgroup \bf Equation  \: (i) \bigg \rgroup \\  \\

\qquad \qquad\tiny \dag \:  \underline{ \pink{\tt As  \: we \:  know \:  that :}} \\

\large\dag \:\boxed{\boxed{\sf sin^2 \theta + cos^2 \theta = 1}} \:  \dag \\  \\

\qquad \qquad\tiny  \dag \:  \underline \red{ {\tt So, from  \: that \:  we \:  can  \: obtain :}} \\

: \implies \sf sec^2 \theta - tan^2 \theta = 1 \:\:\:\:\Bigg\lgroup \bf Dividing  \: it \:  with \:  cos^2  \: \theta \Bigg\rgroup \\  \\

:\implies \sf (sec \:  \theta + tan  \: \theta) \:  (sec \:  \theta - tan  \: \theta) = 1 \:  \:  \:  \:  \bigg \lgroup \bf Equation  \: (ii) \bigg \rgroup \\  \\

: \implies \sf (sec  \: A + tan \:  A) (sec \:  B + tan \:  B) (sec \:  C + tan \:  C) =  \dfrac{1}{(sec  \: A  +  tan \:  A)}  \times  \dfrac{1}{(sec  \: B  +  tan  \: B)} \times  \dfrac{1}{(sec \:  C +  tan  \: C)} \\  \\

: \implies \sf \bigg\langle \sf (sec  \: A + tan \:  A) \:  (sec \:  B + tan \:  B) \:  (sec \:  C + tan \:  C)\bigg\rangle ^{2}  = 1 \\  \\

:\implies \sf (sec  \: A + tan \:  A) \:  (sec \:  B + tan \:  B) \:  (sec \:  C + tan \:  C) =  \pm \: 1 \\  \\

\qquad \qquad\tiny  \dag \:  \underline \purple{ {\tt From \:  Equation \:  (i) \:  we \:  get :}} \\ </p><p>

:\implies \underline{ \boxed{\sf (sec  \: A  -  tan \:  A) \:  (sec \:  B  -  tan \:  B) \:  (sec \:  C  -  tan \:  C) =  \pm \: 1}} \\  \\

\qquad \huge \bigstar \: \underline{ \red{\tt Hence, Proved} } \: \bigstar

Similar questions