cheak whether(5,-2),(6,4)and(7,-2)are vertices of an isosceles triangle.
Answers
Answered by
5
Hi
Here is your answer,
Using Distance formula
√(x₂ - x₁)² + (y₂ - y₁)²
AB = √( 5 - 6)² + (-2 -4)²
= √(-1)² + (6)²
= √1 + 36
= √37
BC = √(x₂ - x₁)² + (y₂ - y₁)²
= √(6 -7)² + (4-(-2)²)
= √(-1)² + (4 +2)²
= √(1 + (6)²
= √(1 + 36)
= √37
CA = √(x₂ - x₁)² + (y₂ - y₁)²
= √(5 - 7)² + (-2-(-2)²
= √(-2)² + 0²
= 2
∴ AB = BC
So, ABC is a isosceles triangle.
Hope it helps you!
Here is your answer,
Using Distance formula
√(x₂ - x₁)² + (y₂ - y₁)²
AB = √( 5 - 6)² + (-2 -4)²
= √(-1)² + (6)²
= √1 + 36
= √37
BC = √(x₂ - x₁)² + (y₂ - y₁)²
= √(6 -7)² + (4-(-2)²)
= √(-1)² + (4 +2)²
= √(1 + (6)²
= √(1 + 36)
= √37
CA = √(x₂ - x₁)² + (y₂ - y₁)²
= √(5 - 7)² + (-2-(-2)²
= √(-2)² + 0²
= 2
∴ AB = BC
So, ABC is a isosceles triangle.
Hope it helps you!
Similar questions