Math, asked by parmar16, 1 year ago

check if 1 and 3 are the zeros of the polynomial
x ^{3}  - 6x  ^{2} + 11x - 6

Answers

Answered by Brâiñlynêha
10

\huge\mathfrak{\underline{\underline{Answer:-}}}

\sf p(x)  x{}^{3}-6x{}^{2}+11x-6

 \implies\sf p(1)=(1){}^{3}-6(1){}^{2}+11(1)-6

 \implies\sf p(1)=1-6+11-6

 \implies\sf p(1)= 12-12

\implies\sf p(1)=0

\sf 1\: is\: the\: root\: of \: x{}^{3}-6x{}^{2}+11x-6

\sf p(x) x{}^{3}-6x{}^{2}+11x-6

 \implies\sf p(3)=(3){}^{3}-6(3){}^{2}+11(3)-6

 \implies\sf p(3)=27-54+33-6

\implies\sf p(3)=50-60

\implies\sf p(3)=-10

\sf 3\: is\: not\: the\: root \:of \:x{}^{3}-6x{}^{2}+11x-6

Answered by Anonymous
2

\huge\bold{\underline{\underline{Answer:-}}}

\rm p(x)  x{}^{3}-6x{}^{2}+11x-6

 \implies\rm p(1)=(1){}^{3}-6(1){}^{2}+11(1)-6

 \implies\rm p(1)=1-6+11-6

 \implies\rm p(1)= -5+5

\implies\rm p(1)=0

\sf 1\: is\: the\: root\: of \: x{}^{3}-6x{}^{2}+11x-6

\sf p(x) x{}^{3}-6x{}^{2}+11x-6

 \implies\rm p(3)=(3){}^{3}-6(3){}^{2}+11(3)-6

 \implies\rm p(3)=27-54+33-6

\implies\rm p(3)=-37+27

\implies\rm p(3)=-10

\sf 3\: is\: not\: the\: root \:of \:x{}^{3}-6x{}^{2}+11x-6

Similar questions