Math, asked by amatulrahmanhumna180, 9 months ago

Check if the given functions belong to the solution space of some second
order differential equation
f (x) = 9 cos (2x) 9 (x) = 2cos? (x) – 2sin? (x)​

Answers

Answered by MaheswariS
0

\textbf{Given:}

f(x)=9\,cos2x

g(x)=2\,cosx-2\,sinx

\textbf{To find:}

\text{whether the given functions belong to the solution space}

\text{of some second order differential equation}

\textbf{Solution:}

\text{Consider,}

f(x)=9\,cos2x

\text{Differentiate with respect to x}

\dfrac{df}{dx}=9(-2\,sin2x)

\text{Differentiate again with respect to x}

\dfrac{d^2f}{dx^2}=9(-2^2\,cos2x)

\dfrac{d^2f}{dx^2}=-4(9\,cos2x)

\dfrac{d^2f}{dx^2}=-4\,f

\implies\dfrac{d^2f}{dx^2}+4\,f=0

\therefore\bf\,f(x)=9\,cos2x\;\textbf{is the solution of the second order differential equation}\\\bf\dfrac{d^2f}{dx^2}+4\,f=0

\text{Consider,}

g(x)=2\,cosx-2\,sinx

\text{Differentiate with respect to x}

\dfrac{dg}{dx}=2(-sinx)-2(cosx)

\text{Differentiate again with respect to x}

\dfrac{d^2g}{dx^2}=2(-cosx)-2(-sinx)

\dfrac{d^2g}{dx^2}=-2\,cosx+2\,sinx

\dfrac{d^2g}{dx^2}=-(2\,cosx-2\,sinx)

\dfrac{d^2g}{dx^2}=-g

\implies\dfrac{d^2g}{dx^2}+g=0

\therefore\bf\,g(x)=2\,cosx-2\,sinx\;\textbf{is the solution of the second order differential equation}\\\bf\dfrac{d^2g}{dx^2}+g=0

Similar questions