Math, asked by Hirthicvishnu, 11 months ago

Check that the list of number defined by the

n-th term 2n² + 1 is an AP or not.

Answers

Answered by Anonymous
8

Question :

Check the number defined by the nth term 2n² + 1 is an A.P or not.

Answer :

\boxed{\sf{a_n \: = \: 2n^2 \: + \: 1}}

Put n = 1

⇒a1 = 2(1)² + 1

⇒a1 = 2 + 1

⇒a1 = 3

\rule{150}{0.5}

Put n = 2

⇒a2 = 2(2)² + 1

⇒a2 = 2(4) + 1

⇒a2 = 8 + 1

⇒a2 = 9

\rule{150}{0.5}

Put n = 3

⇒a3 = 2(3)² + 1

⇒a3 = 2(9) + 1

⇒a3 = 18 + 1

⇒a3 = 19

_____________________________

If the common difference between the terms will be same then it will be an A.P

⇒d1 = a2 - a1

⇒d1 = 9 - 3

⇒d1 = 6

_________

⇒d2 = a3 - a2

⇒d2 = 19 - 9

⇒d2 = 10

\rule{200}{2}

As, d1 ≠ d2

So, this is not defined for A.P

Answered by TheVenomGirl
59

\bold{\Large{\underline{\underline{\rm{\red{Question:-}}}}}}

Check the number defined by the nth term 2n² + 1 is an A.P or not.

\bold{\Large{\underline{\underline{\rm{\pink{AnSwer:-}}}}}}

According to the question,

 \sf \longmapsto \: an \:  = 2 {n}^{2} + 1 ...(1)

━━━━━━━━━━━━━━━━━━━━━━━━━━

Substitute n = 1 in equation (1),

 \sf \longmapsto \: a1 = 2 ({1})^{2}  + 1 \\  \\  \sf \longmapsto \:a1 = 2 + 1 \\  \\  \sf \longmapsto \:a1 = 3

━━━━━━━━━━━━━━━━━━━━━━━━━━

Similarly,

Substitute n=2 in equation (1),

 \sf \longmapsto \:a2 = 2  ({2})^{2} + 1   \\  \\ \sf \longmapsto \:a2 = 2 \times 4 + 1 \\  \\ \sf \longmapsto \:a2  = 8 + 1 \\  \\ \sf \longmapsto \:a2 = 9 \\  \\

━━━━━━━━━━━━━━━━━━━━━━━━━━

Also,

Substitute n=3 in equation (1),

\sf \longmapsto \:a3 = 2 ({3})^{2} + 1 \\  \\  \sf \longmapsto \:a3 = 2  \times 9 + 1 \\  \\ \sf \longmapsto \:a3 = 18 + 1 \\  \\ \sf \longmapsto \:a3 = 19

━━━━━━━━━━━━━━━━━━━━━━━━━━

To be an AP the common difference of the terms should be same. So,

\sf \longmapsto \:d1 = a2  -  a1 \\  \\  \\ \sf \longmapsto \:d1 = 9 - 3 \\  \\  \\ \sf \longmapsto \:d1 = 6

━━━━━━━━━━━━━━━━━━━━━━━━━━

Now,

\sf \longmapsto \:d2 = a3 - a2 \\   \\ \\ \sf \longmapsto \:d2 = 19 - 9 \\  \\ \\  \sf \longmapsto \:d2 = 10

Here, d1 ≠ d2

So ,we cannot define it as AP .

Similar questions