check the accuracy of the given statement :(x+2) is factor of p(x)= x^(3)+x^(2)+x+2
Answers
Answer:
To Prove (x+2) is a factor of p(x)=x3+x2+x+2
Prove (x+2) is a factor of p(x)=x3+x2+x+2⇒x+2=0
Prove (x+2) is a factor of p(x)=x3+x2+x+2⇒x+2=0⇒x=−2
Prove (x+2) is a factor of p(x)=x3+x2+x+2⇒x+2=0⇒x=−2Putting value of x=−2 in p(x)
Prove (x+2) is a factor of p(x)=x3+x2+x+2⇒x+2=0⇒x=−2Putting value of x=−2 in p(x)=x3+x2+x+2
Prove (x+2) is a factor of p(x)=x3+x2+x+2⇒x+2=0⇒x=−2Putting value of x=−2 in p(x)=x3+x2+x+2=(−2)3+(−2)2+(−2)+2
Prove (x+2) is a factor of p(x)=x3+x2+x+2⇒x+2=0⇒x=−2Putting value of x=−2 in p(x)=x3+x2+x+2=(−2)3+(−2)2+(−2)+2=−8+4−2+2
Prove (x+2) is a factor of p(x)=x3+x2+x+2⇒x+2=0⇒x=−2Putting value of x=−2 in p(x)=x3+x2+x+2=(−2)3+(−2)2+(−2)+2=−8+4−2+2=−4.
Prove (x+2) is a factor of p(x)=x3+x2+x+2⇒x+2=0⇒x=−2Putting value of x=−2 in p(x)=x3+x2+x+2=(−2)3+(−2)2+(−2)+2=−8+4−2+2=−4.so, it is not equal to zero so x+2 is not a factor.
Prove (x+2) is a factor of p(x)=x3+x2+x+2⇒x+2=0⇒x=−2Putting value of x=−2 in p(x)=x3+x2+x+2=(−2)3+(−2)2+(−2)+2=−8+4−2+2=−4.so, it is not equal to zero so x+2 is not a factor.Hence, solve.