Physics, asked by omdalvi42, 3 months ago

check the correctness of equation using dimensions analysis of v√2=u+at​

Answers

Answered by lakshmi24diya
1

Answer:

according to principle of homogeneity the equation is correct

Explanation:

v=LT^{-1}(velocity)

\sqrt{2\\}=as it is a constant it does not have dimensional formula

u=LT^{-1}(initial velocity)

a=LT^{-2}(acceleration)

t=T

substituting the values we get,

LT^{-1}=LT^{-1} + LT^{-2} * T

LT^{-1} = LT^{-1} + LT^{-1}

therefor the equation is dimensinally correct

Answered by RISH4BH
45

\Large\underline{\underline{\red{\sf \purple{\maltese}\:\: Given:- }}}

\textsf{$\to$ A equation is given i.e.  $\sf v \sqrt2 = u + at$ }

\Large\underline{\underline{\red{\sf \purple{\maltese}\:\: To \ Check :- }}}

\textsf{$\to$ The correctness of the equation dimensionally.}

\Large\underline{\underline{\red{\sf \purple{\maltese}\:\: Answer :- }}}

The equation given to us is v√2 = u + at.Here , a is acceleration , v is final velocity , t is time and u is initial velocity. So ,

\sf\longrightarrow Dimensional \ formula \ of \ velocity =[v]= \red{ [ M^0 L^1 T^{-1}]}

\sf\longrightarrow Dimensional \ formula \ of \ Displacement =[s] =\red{ [ M^0 L^1 T^{0}]}

\sf\longrightarrow Dimensional \ formula \ of \ accl^n=[a]=\red{ [ M^0 L^1 T^{-2}]}

\sf\longrightarrow Dimensional \ formula \ of \ time=[t]=\red{ [ M^0 L^0 T^{1}]}

\underline{\purple{\textsf{Hence here we have in LHS as , }}}

\sf:\implies\pink{\boxed{\sf  [v]\sqrt 2= [M^0L^1T^{-1}]}}

_________________________________

\underline{\purple{\textsf{Hence here we have in RHS as , }}}

\sf:\implies [u] + [at ]= [M^0L^1T^{-1}] + ([M^0L^1T^{-2}])( [M^0 L^0T^1]) \\\\\sf:\implies \sf:\implies[ u] + [at ]= [M^0L^1T^{-1}] + [ M^{(0+0)} L^{(1+0)}T^{(-2+1)}] \\\\\sf:\implies\boxed{\pink{\sf [u]+[at]= [M^0L^1T^{-1}] +[M^0L^1T^{-1}] }}

\textsf{$\to$ Since the dimensions of LHS and RHS is same,}\\\textsf{ i.e.\red{[ $\sf M^0L^1T^{-1}$]}.So the equation is dimensionally correct  }.

\underline{\underline{\textsf{\textbf{ \blue{Hence  the  equation is dimensionally correct  ! }}}}}

Attachments:
Similar questions