Physics, asked by rosemijilson, 4 months ago

Check the correctness of the eqation
H=(v^2sin^2 thetta ) / 2 g. where H= maximum height v= initial velocity theetta= angle of projection. g = acceleration due to gravity?
plz help me​
question belogs to +1 physics

Answers

Answered by Arceus02
8

To check the correctness of the equation, we have to use dimensional analysis. If the dimensions of L.H.S. and R.H.S. are same, that means the equation in dimensionally correct.

\\

L.H.S. :-

\underline{\underline{\green{\sf{H = \bigg\{ L\bigg\} }}}}

\\

R.H.S :-

\sf \dfrac{v^2 sin^2\theta}{2g}

As \sf sin\theta is dimensionless, \sf sin^2\theta will also be dimensionless.

\sf \Bigg\{\dfrac{v^2 sin^2\theta}{2g}\Bigg\} = \Bigg\{ \dfrac{ \Big( \scriptsize\dfrac{L}{T}\Big)^2 }{ \Big( \scriptsize\dfrac{L}{T^2 }\Big) } \Bigg\}

\longrightarrow \sf \Bigg\{\dfrac{v^2 sin^2\theta}{2g}\Bigg\} = \Bigg\{ \dfrac{ \Big( \scriptsize\dfrac{L^2}{T^2}\Big)}{ \Big( \scriptsize\dfrac{L}{T^2}\Big) }\Bigg\}

\longrightarrow \sf\Bigg\{ \dfrac{v^2 sin^2\theta}{2g}\Bigg\} =\Bigg\{ \dfrac{ \Big( \scriptsize\dfrac{L^2}{{\cancel{T^2}}}\Big)}{ \Big( \scriptsize\dfrac{L}{{\cancel{T^2}}}\Big)} \Bigg\}

\longrightarrow \sf \Bigg\{\dfrac{v^2 sin^2 \theta}{2g}\Bigg\} = \Bigg\{ \dfrac{L^2}{L} \Bigg\}

\longrightarrow \sf\Bigg\{ \dfrac{v^2 sin^2 \theta}{2g}\Bigg\} = \Bigg\{\dfrac{ {L}^{ {\cancel{2}}} }{ {\cancel{L}} } \Bigg\}

\longrightarrow \underline{\underline{\green{\sf{\Bigg\{ \dfrac{v^2 sin^2 \theta}{2g}\Bigg\} =\Bigg\{ L \Bigg\} }}}}

\\

As the dimensions of L.H.S. and R.H.S. are same, the equation in dimensionally correct.

Similar questions