Physics, asked by swainseema890, 5 months ago

check the correctness of the relation. P=1/2pv²+pgh​

Answers

Answered by aryan073
7

Given :

check the correctness of the relation:

\rm{p=\dfrac{1}{2}pv^2+pgh}

Dimensions :

 \\  (1) \bf \: pressure \:   = \frac{force}{area}

\\ \to\rm{pressure= ML^{-1}T{^-2}}

 \\ (2) \bf\: velocity =  \frac{meter}{second}

\\ \to\rm{Velocity=LT^{-1}}

 \\  (3)  \bf \: g \:  =  \frac{m}{ {s}^{2} }

\\ \to\rm{acceleration(g)=LT^{-2}}

 (4) \bf \: height \:  =  \: (in \: meter)

\\ \to\rm{height=L}

Solution :

LHS:

  \\ \implies \large \sf \:  pressure \:  =  \frac{force}{area}  =  \frac{n}{ {m}^{2} }

\sf{\bullet \: Force =Newton  \:and \: area =m²}

\\ \sf{Pressure=ML^{-1}T^{-2}}

RHS:

\\ \implies\large\sf{ \dfrac{1}{2}pv^{2}+phg}

➡ here in dimensions 1/2 is neglicted because it is constant.

\\ \implies\large\sf{pv^2 +pgh}

\\ \implies\large\sf{\dfrac{kg}{m^{2}} \times \dfrac{m}{s^{2}} \times m}

\\ \implies\large\sf{kgm^{-1} s^{-2}}

\\ \implies\large\sf{ML^{-1} T^{-2}}

As we see that ,LHS=RHS

Therefore both LHS and RHS has a dimensions of pressure hence both are equal to each other

so we can say,

 \therefore \boxed{ \large \sf{p =  \frac{1}{2} p {v}^{2}  + pgh}}

Similar questions