Physics, asked by channammanagavimath, 4 months ago

Check the dimensions of the equation 1÷2mv2 -1÷2mu2=Fs in physics​

Answers

Answered by Anonymous
3

\huge{\mathbb{\red{ANSWER:-}}}

From LHS -

\sf{\dfrac{1}{2}mv^{2} - \dfrac{1}{2}mu^{2}}

\sf{\dfrac{1}{2}m (v^{2} - u^{2})}

By Using Third equation of Newton's motion

We know -

\sf{v^{2} - u^{2} = 2as}

Then ,

\sf{= \dfrac{m}{2}(2as)}

\sf{= mas}

By Second law of Newton's motion -

\sf{F = ma}

then ,

\sf{= Fs}

Now , from Dimensions -

\sf{Dimensions \: of \: Mass = [M^{1}L^{0}T^{0}]}

\sf{Dimension \: of \: acceleration =[M^{0}L^{1}T^{-2}]}

\sf{Dimension \: of \: distance =[M^{0}L^{1}T^{0}]}

\sf{Dimension \: of \: force =[M^{1}L^{1}T^{-2}]}

\sf\boxed{mas = Fs}

\sf{[M^{1}][M^{0}L^{1}T^{-2}][M^{0}L^{1}T^{0}] =[M^{1}L^{1}T^{-2}][M^{0}L^{1}T^{0}]}

\sf{[M^{1+0+0} \: L^{0+1+1} \: T^{0-2+0}]=[M^{1+0} \: L^{1+1} \: T^{-2+0}]}

\sf{[M^{1}L^{2}T^{-2}] = [M^{1}L^{2}T^{-2}]}

\sf{L . H . S = R . H . S}

Similar questions