Math, asked by juppuneet28, 12 hours ago

Check the nature of the following differentiable function (i) arccos(x) + ln (x+1/x) ​

Answers

Answered by vikkiain
1

(i) \frac{ - 1}{ \sqrt{ {x}^{2} + 1 } }  +  \frac{ {x}^{2} - 1 }{x( {x}^{2} + 1 )}

Step-by-step explanation:

(i) \:  \:  \:  Let, \\ y = \arccos(x) \:  \:  \: and \:  \:  \: z =  ln(x +  \frac{1}{x} ) \\ then, \:  \: \arccos(x) +  ln(x +  \frac{1}{x} )  = y + z \\ Differential \:  \:  of  \:  \: the \:  \:  given \:  \:  equation  \\   \boxed{\frac{dy}{dx} +  \frac{dz}{dx}  }\\ Now,  \:  \: y =  \arccos(x) \\ \:  \:  \:  \:  or, \:  \:  \cos(y) = x \\ Differentiating  \:  \: with \:  \:  respect  \:  \: to  \:  \: x \\  \frac{d \{  \cos(y)\}}{dx} =  \frac{dx}{dx}  \\  -  \sin(y). \frac{dy}{dx} = 1 \\  \frac{dy}{dx} =  \frac{1}{ -  \sin(y)}  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \: =  \frac{ - 1}{ \sqrt{1 -  { \cos}^{2} y} }  \\  \:  \:  \:  \:  \:  \:  \:  \boxed{ =  \frac{ - 1}{ \sqrt{1 -  {x}^{2} }  } } \\again,  \:  \:  \: z =  ln(x +  \frac{1}{x} )  \\ Differentiating  \:  \: with \:  \:  respect  \:  \: to  \:  \: x \\  \frac{dz}{dx} =  \frac{1}{x +  \frac{1}{x} }  \times (1 -  \frac{1}{ {x}^{2} } ) \\  =  \frac{1}{ \frac{ {x}^{2} + 1 }{x} } \times  \frac{ {x}^{2} - 1 }{ {x}^{2} }  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: =  \frac{x}{ {x}^{2} + 1 } \times  \frac{ {x}^{2} - 1 }{ {x}^{2} }   \\  \boxed{ =  \frac{ {x}^{2} - 1 }{x( {x}^{2} + 1 )} } \\so, \:  Differential \:  \:  of  \:  \: the \:  \:  given \:  \:  equation \\  =  \frac{dy}{dx}  +  \frac{dz}{dx}  \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   =  \boxed{ \frac{ - 1}{ \sqrt{ {x}^{2} + 1 } }  +  \frac{ {x}^{2} - 1 }{x( {x}^{2} + 1 )} }

Similar questions