check the relation R=A,A defined on the set A= { a,b} for the equivance relation.
Answers
Answered by
1
Answer:
join then i will explain you
.
.
.
.
.
Attachments:
Answered by
1
Answer:
Holla
Step-by-step explanation:
A={x∈Z:0≤x≤12}={0,1,2,3,4,5,6,7,8,9,10,11,12}
R={(a,b):∣a−b∣is a multiple of 4}
For any element a∈A, we have (a,a)∈R as ∣a−a∣=0 is a multiple of 4.
∴R is reflexive.
Now, let (a,b)∈R⇒∣a−b∣ is a multiple of 4.
⇒∣−(a−b)∣=∣b−a∣ is a multiple of 4.
⇒(b,a)∈R
∴ is symmetric.
Now, let (a,b),(b,c)∈R
⇒∣a−b∣ is a multiple of 4 and ∣b−c∣ is a multiple of 4.
⇒(a−b) is a multiple of 4 and (b−c) is a multiple of 4.
⇒(a−c)=(a−b)+(b−c) is a multiple of 4.
⇒∣a−c∣ is a multiple of 4.
⇒(a,c)∈R.
Similar questions