Math, asked by Brainlyparinda, 6 months ago

check the validity of the result, (x + y)^-1 ≠ x^-1 + y^-1 for x = 1/3, y = -2/7​

Answers

Answered by LoverLoser
3

\star\sf\underline\blue{Explanation:-}

\sf {(x + y)^{-1} = \bigg(\dfrac{1}{3} + \dfrac{-2}{7} \bigg)^{-1}} \\\\

\longrightarrow \sf{\bigg[\dfrac{7 + (-6)}{21} \bigg]^{-1}} \\\\

\longrightarrow \sf{\bigg[\dfrac{7 - 6}{21} \bigg]^{-1}} \\\\

\longrightarrow \sf{\bigg[\dfrac{1}{21} \bigg]^{-1}} \\\\

\longrightarrow \boxed{\sf{\purple{21}}} \\\\

\sf\underline{\green{\:\:\: Now,\:\:\:}}

\sf {x^{-1} + y^{-1} = \bigg(\dfrac{1}{3}\bigg)^{-1} + \bigg(\dfrac{-2}{7}\bigg)^{-1}} \\\\

\longrightarrow \sf {3 + \dfrac{7}{-2}}\\\\

\longrightarrow \sf {\dfrac{3}{1} + \dfrac{-7}{2}}\\\\

\longrightarrow \sf {\dfrac{6 - 7}{2}}\\\\

\longrightarrow \boxed{\sf{\purple{\dfrac{-1}{2}}}} \\\\

\sf\underline{\pink{\:\:\: Hence,\:\:\:}}

\:\:\:\:\dag\bf{\underline{\underline \orange{(x + y)^{-1} \: \neq \: x^{-1} \:+\: y^{-1}}}}

Similar questions