Math, asked by aswinakku05, 8 months ago

check whether 2019 a term of the A. S 5, 8, 11,....​

Answers

Answered by mysticd
0

 Given \: sequence \: 5,8,11 \ldots

 i) a_{2} - a_{1} = 8 - 5 = 3

 ii) a_{3} - a_{2} = 11 - 8 = 3

 \blue {a_{2} - a_{1} = a_{3} - a_{2} = 3}

 \therefore Given \: sequence \: is \:an \:A.P

 Now ,First \:term ( a ) = 5

 Common \: difference (d) = 3

 Let \: n^{th} \:term \: of \: A.P = 2019

 \implies a + (n-1)d = 2019

 \implies 5 + (n-1)\times 3 = 2019

 \implies (n-1)\times 3 = 2019 - 5

 \implies (n-1)\times 3 = 2014

 \implies n-1= \frac{ 2014}{3}

 \implies n= \frac{ 2014}{3} + 1

 \implies n= \frac{ 2014 + 3}{3}

 \implies n= \frac{ 2017}{3}

 But \: \red{( Number \:terms \:of \: an \:A.P }

 \red{ should \:not \:be \: a \: fraction) }

Therefore.,

 \green { 2019 \: is \:not \: a \: term \:of }

 \green { given \:A.P .}

•••♪

Similar questions