Math, asked by hemachandrika, 1 month ago

check whether (5,-2),(6,4) and(7,-2) are the vertices of an isosceles triangle​

Answers

Answered by VεnusVεronίcα
208

\large \pmb{\mathfrak{➜ \: Given:}}

We are given three points (5,-2), (6,4) and (7,-2).

 \\

\large \pmb{\mathfrak{➜ \: To \: find/To \: check:}}

We've to check whether the given points are the vertices of an isosceles triangle or not.

 \\

\large \pmb{\mathfrak{➜ \: Solution:}}

Let the three points be :

  • A = (5,-2)
  • B = (6,4)
  • C = (7,-2)

We know that, in an isosceles triangle, two sides are equal, so the either of the following conditions should be fulfilled :

  • AB = AC
  • AC = BC
  • BC = AB

The distance of AB, AC and BC can be given by the distance formula :

\underline{\boxed{\pmb{\rm{Distance \: formula= \sqrt{(x_2-x_1)^2 + (y_2-y_1)^2} }}}}

\implies\pmb{\rm{Distance \: of \: AB:}}

{\pmb{\rm {Here, \: x_1=5, \: x_2=6~;~y_1= - 2, \: y_2=4}}}

\implies{\pmb{\rm{ \sqrt{(6 - 5)^2+(4 - ( - 2))^2} }}}

\implies{\pmb{{\rm{ \sqrt{(1)^2+(4+2)^2} }}}}

\implies {\pmb{\rm{ \sqrt{(1)^2+(6)^2} }}}

\implies{\pmb{\rm{ \sqrt{1+36} }}}

\implies{\pmb{\rm{  \sqrt{37} }}}

\implies{\pmb{\rm{Distance \: of \: BC:}}}

\pmb{\rm{Here, \: x_1=6, \: x_2=7 \: ; \: y_1=4, \: y_2= - 2}}

\implies{\pmb{\rm{ \sqrt{(7 - 6)^2+( - 2 - 4)^2} }}}

\implies{\pmb{\rm{ \sqrt{(1)^2+(-6)^2} }}}

\implies{\pmb{\rm{ \sqrt{1+36} }}}

\implies{\pmb{\rm{ \sqrt{37} }}}

\implies{\pmb{\rm{Distance \: of \: AC:}}}

\pmb{\rm{Here, \: x_1=5 \: ,x_2  = 7\:  ;\: y_1= - 2, \: y_2= - 2}}

\implies{\pmb{\rm{ \sqrt{(7 - 5)^2+( - 2 - ( - 2))^2} }}}

\implies{\pmb{\rm{ \sqrt{(2)^2+( - 2 + 2)^2} }}}

\implies{\pmb{\rm{ \sqrt{(2)^2+(0)^2} }}}

\implies{\pmb{\rm{ \sqrt{4} }}}

\implies{\pmb{\rm{2}}}

Hence,

  • AB = 37
  • BC = 37
  • AC = 2

Therefore, AB = BC (37=37).

Since, it fulfilled the condition AB = BC, ∆ABC is an isosceles triangle.

 \\

_________________________

Swipe your screen from left to right in order to view the answer completely!

Attachments:
Answered by Anonymous
1

Answer:

We are given three points (5,-2), (6,4) and (7,-2).

We've to check whether the given points are the vertices of an isosceles triangle or not.

Let the three points be :

A = (5,-2)

B = (6,4)

C = (7,-2)

We know that, in an isosceles triangle, two sides are equal, so the either of the following conditions should be fulfilled :

AB = AC

AC = BC

BC = AB

The distance of AB, AC and BC can be given by the distance formula :

Hence,

AB = √37

BC = √37

AC = 2

Therefore, AB = BC (√37=√37).

Since, it fulfilled the condition AB = BC, ∆ABC is an isosceles triangle.

Step-by-step explanation:

Plz mark as Brainliest...

Similar questions