Math, asked by Pushpadudde, 19 days ago

check whether (5,-2), (6,4),and (7,-2) are the vertices of an isosceles triangle​

Answers

Answered by karnagaddam3
0

Step-by-step explanation:

hope it helps you

mark as brainliest

Attachments:
Answered by Teluguwala
3

Given :-

  • The given points are (5,-2), (6,4), and (7,-2)

To Find :-

  • Check whether the points are vertices of an isosceles triangle ?

Formula Used :-

♣️ Distance formula :

 \bigstar \:  \:  \boxed{ \bf \pmb{ \: d \:  = \:   \sqrt{  \bigg(x_{2} -  x_{1} \bigg)^{2}  + \bigg (y_{2} -  y_{1} \bigg)^{2} }  } \: }  \: \:  \bigstar

Solution :-

Given that,

⟶\;The given points are (5,-2), (6,4), and (7,-2)

Let,

  • (5,-2) = A
  • (6,4) = B
  • (7,-2) = C

Firstly, We have to find the distance between A and B :

We know that,

  •  \sf  \pmb{x_{1}}\; = 5
  •  \sf  \pmb{x_{2}}\; = 6
  •  \sf  \pmb{y_{1}}\; = -2
  •  \sf  \pmb{y_{2}}\; = 4

Now,

  \sf \:  \implies \:  \pmb{ \: AB \:  = \:   \sqrt{( x_{2} -  x_{1} )^{2}  +( y_{2} -  y_{1} )^{2} }  }

  \sf \:  \implies \:  \pmb{ \: AB \:  = \:   \sqrt{( 6 - 5 )^{2}  +(  4-   ( - 2) )^{2} }  }

  \sf \:  \implies \:  \pmb{ \: AB \:  = \:   \sqrt{( 1 )^{2}  +( 4  +  2 )^{2} }  }

 \sf \:  \implies \:  \pmb{ \: AB \:  = \:   \sqrt{( 1 )^{2}  +( 6)^{2} }  }

 \sf \:  \implies \:  \pmb{ \: AB \:  = \:   \sqrt{1   +36}  }

 \sf \:  \implies \:  \pmb{ \: \red{ AB \:  = \:   \sqrt{37}  }}

Now, We have to find the distance between B and C :

We know that,

  •  \sf  \pmb{x_{1}}\; = 6
  •  \sf  \pmb{x_{2}}\; = 7
  •  \sf  \pmb{y_{1}}\; = 4
  •  \sf  \pmb{y_{2}}\; = -2

Now,

  \sf \:  \implies \:  \pmb{ \: B C\:  = \:   \sqrt{( x_{2} -  x_{1} )^{2}  +( y_{2} -  y_{1} )^{2} }  }

  \sf \:  \implies \:  \pmb{ \: B C\:  = \:   \sqrt{( 7 -  6 )^{2}  +( - 2-  ( + 4) )^{2} }  }

 \sf \:  \implies \:  \pmb{ \: B C\:  = \:   \sqrt{( 1)^{2}  +( - 2-  4)^{2} }  }

 \sf \:  \implies \:  \pmb{ \: B C\:  = \:   \sqrt{1+( -6)^{2} }  }

 \sf \:  \implies \:  \pmb{ \: B C\:  = \:   \sqrt{1 +36 }  }

 \sf \:  \implies \:  \pmb{  \red{\: B C\:  = \:   \sqrt{37 }  } }

Then, We have to find the distance between C and A :

We know that,

  •  \sf  \pmb{x_{1}}\; = 7
  •  \sf  \pmb{x_{2}}\; = 5
  •  \sf  \pmb{y_{1}}\; = -2
  •  \sf  \pmb{y_{2}}\; = -2

Now,

  \sf \:  \implies \:  \pmb{ \:  CA\:  = \:   \sqrt{( x_{2} -  x_{1} )^{2}  +( y_{2} -  y_{1} )^{2} }  }

 \sf \:  \implies \:  \pmb{ \:  CA\:  = \:   \sqrt{( 5 -  7 )^{2}  +( - 2 -  ( - 2))^{2} }  }

 \sf \:  \implies \:  \pmb{ \:  CA\:  = \:   \sqrt{(  - 2)^{2}  +( - 2  + 2)^{2} }  }

 \sf \:  \implies \:  \pmb{ \:  CA\:  = \:   \sqrt{ 4 +( 0)^{2} }  }

 \sf \:  \implies \:  \pmb{ \:  CA\:  = \:   \sqrt{ 4 + 0}  }

\sf \:  \implies \:  \pmb{ \:  CA\:  = \:   \sqrt{ 4} }

\sf \:  \implies \:  \pmb{ \:  CA\:  = \:   \sqrt{ {2} ^{2} \:}  }

\sf \:  \implies \:  \pmb{ \:   \red{CA\:  = \:  2}}

Hence,

We proved that the points are vertices of an isosceles triangle.

 \:

NOTE :

In isosceles triangle, two sides are equal and the other side is different in measures.

Attachments:
Similar questions