check whether (6,0) is a solution of the equation x+2y=6
Answers
yes it the sol for x+ 2y =6
Step-by-step explanation:
taking x as6
and y as 0
6+2*0=6
hence rhs is equal to lhs
Mark as brainiest plz plz
Answer:
your answer.
Step-by-step explanation:
swer:
\begin{gathered} Four \: different\: solutions\\of \: given\: equation \\are \: (0,3),(2,2),(4,1)\:and\:(6,0)\end{gathered}
Fourdifferentsolutions
ofgivenequation
are(0,3),(2,2),(4,1)and(6,0)
Step-by-step explanation:
\begin{gathered} Given \: Linear \: equation \\in \: two \: variables \:is \:x+2y=6\end{gathered}
GivenLinearequation
intwovariablesisx+2y=6
\implies 2y = 6-x⟹2y=6−x
\implies y =\frac{6-x}{2}\:--(1)⟹y=
2
6−x
−−(1)
/* Put x = 0, 2,4 and 6 ,we get
\begin{gathered} Now,\\i) if \: x=0, then \\ < /p > < p > y = \frac{6-0}{2}=3\end{gathered}
Now,
i)ifx=0,then
</p><p>y=
2
6−0
=3
\begin{gathered} Now,\\ii) if \: x=2, then \\ < /p > < p > y = \frac{6-2}{2}=2\end{gathered}
Now,
ii)ifx=2,then
</p><p>y=
2
6−2
=2
\begin{gathered} Now,\\iii) if \: x=4, then \\ < /p > < p > y = \frac{6-4}{2}=1\end{gathered}
Now,
iii)ifx=4,then
</p><p>y=
2
6−4
=1
\begin{gathered} Now,\\i) if \: x=6, then \\ < /p > < p > y = \frac{6-6}{2}=0\end{gathered}
Now,
i)ifx=6,then
</p><p>y=
2
6−6
=0
Therefore,
\begin{gathered} Four \: different\: solutions\\of \: given\: equation \\are \: (0,3),(2,2),(4,1)\:and\:(6,0)\end{gathered}
Fourdifferentsolutions
ofgivenequation
are(0,3),(2,2),(4,1)and(6,0)
••
That's your answer.
Mark as brainlist.
Thnx.