Math, asked by gokul357182, 3 months ago

check whether (6,0) is a solution of the equation x+2y=6​

Answers

Answered by eeshakamal2005
1

yes it the sol for x+ 2y =6

Step-by-step explanation:

taking x as6

and y as 0

6+2*0=6

hence rhs is equal to lhs

Mark as brainiest plz plz

Answered by harmanpsingh61
1

Answer:

your answer.

Step-by-step explanation:

swer:

\begin{gathered} Four \: different\: solutions\\of \: given\: equation \\are \: (0,3),(2,2),(4,1)\:and\:(6,0)\end{gathered}

Fourdifferentsolutions

ofgivenequation

are(0,3),(2,2),(4,1)and(6,0)

Step-by-step explanation:

\begin{gathered} Given \: Linear \: equation \\in \: two \: variables \:is \:x+2y=6\end{gathered}

GivenLinearequation

intwovariablesisx+2y=6

\implies 2y = 6-x⟹2y=6−x

\implies y =\frac{6-x}{2}\:--(1)⟹y=

2

6−x

−−(1)

/* Put x = 0, 2,4 and 6 ,we get

\begin{gathered} Now,\\i) if \: x=0, then \\ < /p > < p > y = \frac{6-0}{2}=3\end{gathered}

Now,

i)ifx=0,then

</p><p>y=

2

6−0

=3

\begin{gathered} Now,\\ii) if \: x=2, then \\ < /p > < p > y = \frac{6-2}{2}=2\end{gathered}

Now,

ii)ifx=2,then

</p><p>y=

2

6−2

=2

\begin{gathered} Now,\\iii) if \: x=4, then \\ < /p > < p > y = \frac{6-4}{2}=1\end{gathered}

Now,

iii)ifx=4,then

</p><p>y=

2

6−4

=1

\begin{gathered} Now,\\i) if \: x=6, then \\ < /p > < p > y = \frac{6-6}{2}=0\end{gathered}

Now,

i)ifx=6,then

</p><p>y=

2

6−6

=0

Therefore,

\begin{gathered} Four \: different\: solutions\\of \: given\: equation \\are \: (0,3),(2,2),(4,1)\:and\:(6,0)\end{gathered}

Fourdifferentsolutions

ofgivenequation

are(0,3),(2,2),(4,1)and(6,0)

••

That's your answer.

Mark as brainlist.

Thnx.

Similar questions