Math, asked by gautamsnaikgautam200, 1 month ago

Check whether (7,-3) , (6,4) and (-4,2) are collinear.​

Answers

Answered by DeeznutzUwU
0

       \underline{\bold{Solution:}}

       \text{We have to check whether }A(7,-3),B(6,4)\text{ and }C(-4,2) \text{ are collinear}

       \text{If }A,B,C \text{ are collinear then }Ar\triangle{ABC} = 0

       \text{Applying area of triangle formula for coordinates:}

\implies \dfrac12\{x_1(y_2-y_3)+x_2(y_3-y_1) + x_3(y_1-y_2)\}

       \text{In our case:}

       (x_1,y_1) = (7,-3)

       (x_2,y_2) = (6,4)

       (x_3,y_3) = (-4,2)

\implies Ar\triangle{ABC} = \dfrac12[7(4-2) + 6\{2-(-3)\} - 4(-3-4)]

\implies Ar\triangle{ABC} = \dfrac12\{7(4-2) + 6(2+3) - 4(-3-4)\}

\implies Ar\triangle{ABC} = \dfrac12\{7(2) + 6(5) - 4(-7)\}

\implies Ar\triangle{ABC} = \dfrac12(14 + 30 +28)

\implies Ar\triangle{ABC} = \dfrac12(72)

\implies Ar\triangle{ABC} = 36 \text{ sq. units}

\implies Ar\triangle{ABC}\neq 0

 \therefore\text{ }\text{ }\boxed{\text{The points }(7,-3),(6,4)\text{ and }(-4,2) \text{ are non-collinear}}

Similar questions